@article {233, title = {Hydration and temperature interdependence of protein picosecond dynamics}, journal = {Physical Chemistry Chemical Physics}, volume = {14}, number = {18}, year = {2012}, note = {ISI Document Delivery No.: 928AI
Times Cited: 25
Cited Reference Count: 39
Cited References:
Bonvicini D, 1998, IEEE T DIELECT EL IN, V5, P33, DOI 10.1109/94.660757
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brovchenko I, 2008, CHEMPHYSCHEM, V9, P2695, DOI 10.1002/cphc.200800662
Chen G, 2008, PHILOS MAG, V88, P3877, DOI 10.1080/14786430802585117
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103
Ding T, 2011, J PHYS CHEM A, V115, P11559, DOI 10.1021/jp200553d
Doster W, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.098101
DOSTER W, 1989, NATURE, V337, P754, DOI 10.1038/337754a0
Doster W, 2010, BBA-PROTEINS PROTEOM, V1804, P3, DOI 10.1016/j.bbapap.2009.06.019
Ebbinghaus S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104
Frauenfelder H, 2003, P NATL ACAD SCI USA, V100, P8615, DOI 10.1073/pnas.1633688100
GASCOYNE PRC, 1977, J CHEM SOC FARAD T 1, V73, P171, DOI 10.1039/f19777300171
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
HARVEY SC, 1972, J PHYS CHEM-US, V76, P2987, DOI 10.1021/j100665a011
He YF, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.178103
Kauzmann W, 1942, REV MOD PHYS, V14, P0012, DOI 10.1103/RevModPhys.14.12
Khodadadi S, 2010, BBA-PROTEINS PROTEOM, V1804, P15, DOI 10.1016/j.bbapap.2009.05.006
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Makarov VA, 2000, BIOPHYS J, V79, P2966, DOI 10.1016/S0006-3495(00)76533-7
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Markelz AG, 2007, CHEM PHYS LETT, V442, P413, DOI 10.1016/j.cplett.2007.05.080
Oleinikova A, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.247802
Oleinikova A, 2005, J PHYS CHEM B, V109, P1988, DOI 10.1021/jp045903j
Oleinikova A, 2006, MOL PHYS, V104, P3841, DOI 10.1080/00268970601108229
Paciaroni A, 2008, PHILOS MAG, V88, P4071, DOI 10.1080/14786430802464263
Parak FG, 2003, CURR OPIN STRUC BIOL, V13, P552, DOI 10.1016/j.sbi.2003.09.004
Pawlus S, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.108103
Roh JH, 2006, BIOPHYS J, V91, P2573, DOI 10.1529/biophysj.106.082214
Roh JH, 2009, BIOPHYS J, V96, P2755, DOI 10.1016/j.bpj.2008.12.3895
Roh JH, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.038101
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Schiro G, 2011, J PHYS CHEM LETT, V2, P2275, DOI 10.1021/jz200797g
Shen YC, 2003, APPL PHYS LETT, V82, P2350, DOI 10.1063/1.1565680
Soderholm S, 2000, J RAMAN SPECTROSC, V31, P995, DOI 10.1002/1097-4555(200011)31:11<995::AID-JRS634>3.0.CO;2-L
Whitmire SE, 2003, BIOPHYS J, V85, P1269, DOI 10.1016/S0006-3495(03)74562-7
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Zaccai G, 2000, SCIENCE, V288, P1604, DOI 10.1126/science.288.5471.1604
Zhang CF, 2006, J PHYS CHEM B, V110, P23607, DOI 10.1021/jp063545+
Lipps, Ferdinand Levy, Seth Markelz, A. G.
Markelz, Andrea/0000-0003-0443-4319
26

66
Royal soc chemistry
Cambridge
1463-9084}, pages = {6375-6381}, type = {Article}, abstract = {

We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at \>0.27 h (g water per g protein), however the permittivity change is strongest for frequencies \<1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies \>1 THz, and 0.27 h for frequencies \<1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of similar to 5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network.

}, keywords = {Chemistry, dielectric-relaxation, fluctuations, inelastic neutron-scattering, lysozyme, myoglobin, percolation, Physics, spectra, spectroscopy, terahertz beams, transition, water}, isbn = {1463-9076}, doi = {https://doi.org/10.1039/C2CP23760A}, author = {Lipps, F. and Levy, S. and Markelz, A. G.} }