@article {253, title = {Evidence of Intramolecular Structural Stabilization in Light Activated State of Orange Carotenoid Protein}, journal = {Biophysical Journal}, volume = {118}, number = {3}, year = {2020}, note = {ISI Document Delivery No.: KK8YX
Times Cited: 0
Cited Reference Count: 0
McKinney, Jeffrey A. Sharma, Akansha Crossen, Kimberly Deng, Yanting George, Deepu K. Lechno-Yossef, Sigal Kerfeld, Cheryl Markelz, Andrea G.
64th Annual Meeting of the Biophysical-Society
Feb 15-19, 2020
San Diego, CA
Biophys Soc
NSFNational Science Foundation (NSF) [DBI 1556359, MCB 1616529]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NIH STTRUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USA [R41 GM125486]
This work is supported by NSF grants DBI 1556359 and MCB 1616529, DOE grant DE-SC0016317 and NIH STTR R41 GM125486.

1
2
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {208A-208A}, type = {Meeting Abstract}, abstract = {

Orange carotenoid protein (OCP) controls efficiency of the light harvesting antenna, the phycobilisome (PBS), in diverse cyanobacteria and prevents oxidative damage. It is the only known photoactive protein that uses a carotenoid, canthaxanthin, as its chromophore. The structure of OCP consists of two globular domains, connected by an unstructured loop, that forms a hydrophobic pocket for the carotenoid. In low light, canthaxanthin bound OCP is inactive and appears orange. Illumination by strong light results in an active state that interacts with the PBS to induce fluorescence quenching, a red appearance and conformational changes that include a 12{\r A} shift by canthaxanthin into the N-terminal domain. Terahertz (THz) dynamical transition measurements and anisotropic terahertz microscopy are used to measure the intramolecular structural dynamics in the inactive and active states, which can be induced by photoexcitation or chaotropic salts. The measurements indicate that the active state has a decrease in structural flexibility, which may be related to enhanced interactions with the PBS.

}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.1245}, author = {McKinney, J. A. and Sharma, A. and Crossen, K. and Deng, Y. and George, D. K. and Lechno-Yossef, S. and Kerfeld, C. and Markelz, A. G.} } @proceedings {544, title = {Stabilization of Terahertz Vibrational Modes in Illuminated Orange Carotenoid Protein Crystals}, year = {2020}, address = {Buffalo, NY}, abstract = {

Orange carotenoid protein (OCP) controls efficiency of the phycobilisome (PBS), the light harvesting antenna in cyanobacteria, to prevent oxidative damage. The OCP switches from resting state to photo protective state with intense blue light illumination. Questions persist as to why OCPR interaction increases with the PBS over that with the OCPO. Here we examine the role of long-range intramolecular vibrations within OCP. Using Stationary Sample Anisotropic Terahertz Microscopy (SSATM) we measure changes in the intramolecular vibrations with photo switching. We report the first observation of switching in the intramolecular vibrations with photoexcitation. Results suggest that there is a stiffening of the molecule in the photo protective state. This increase in structural stability may enhance the interaction with the PBS change in OCP interaction with PBS. In low light, carotenoid bound OCP appears orange (OCP o ) and is inactive. Illumination by strong light converts OCP to the active, red (OCPR) state, which interacts with the PBS. A comparison of anisotropic THz microscopy measurements of dark adapted (OCP o ) and illuminated OCP crystals indicate differences in their vibrational modes that may be important for OCP-PBS interactions.

}, doi = {10.1109/IRMMW-THz46771.2020.9370827}, author = {McKinney, J. and Sharma, A. and Deng, Y. and George, D. and Lechno-Yossef, S. and Kerfeld, C. and Markelz, A.} } @proceedings {612, title = {THz Transmission through Submillimeter Apertures}, year = {2020}, month = {11/2020}, address = {Buffalo NY}, abstract = {
Terahertz near-field microspectroscopy is emerging as an essential tool for characterization of novel materials and biomolecules. It is important to ensure the near field geometry used does not introduce spectral artifacts. For example, many scanning techniques can be strongly influenced by the interaction between the scattering tip and the sample. Here we examine the spectroscopic effects of a 200 μm diameter aperture for THz near-field measurements. We use HFSS to model free-space transmission through samples with resonant absorbance as a function of sample thickness, lateral sample width, and aperture diameter. We examine the transmitted power and spectral fidelity for coupling of transmitted THz light onto a detector. These studies inform corrective post-measurement analysis algorithms and design of near-field detection systems.
}, doi = {10.1109/IRMMW-THz46771.2020.9370923}, url = {https://ieeexplore.ieee.org/document/9370923}, author = {LaFave, T. and Lee, A. and Kao, T.-Y. and Markelz, A.} } @proceedings {230, title = {Stationary Sample Anisotropic THz Spectroscopy using Discretely Tunable THz Sources}, year = {2019}, note = {Irmmw-thz
44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 01-06, 2019
Paris, FRANCE
Lytid; TYDEX; Swiss Terahertz; Fondat Maison Chimie; CNRS, Lab Physique ENS; Li2S; LUNA; MenloSystems; ENS; PSL Univ Paris; FYLA; ADVANTEST; Springer Nature; Soc Francaise Physique; Sorbonne Univ; Int Soc Infrared Millimeter \& Terahertz Waves; IEEE; GDR NANO THz MIR
2162-2027}, abstract = {

We demonstrate anisotropic THz spectroscopy of sucrose using newly developed compact discretely tunable THz sources for turn-key spectroscopic systems.

}, isbn = {978-1-5386-8285-2}, doi = {https://doi.org/10.1109/IRMMW-THz.2019.8874234}, author = {LaFave, T., Jr. and George, D. K. and Markelz, A. G. and McNee, Ian and Kozlov, Vladimir and Schunemann, Peter} } @proceedings {185, title = {Tunable Compact Narrow Band THz Sources for Frequency Domain THz Anisotropic Spectroscopy}, volume = {10983}, year = {2019}, note = {ISI Document Delivery No.: BN5PJ
Times Cited: 0
Cited Reference Count: 17
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Lee Y. S., 2006, APPL PHYS LETT, V89
Lee YS, 2000, APPL PHYS LETT, V76, P2505, DOI 10.1063/1.126390
Lin A., 2013, ANTIPHASE DOMAIN ANN
Niessen K. A., BIOPHYSICAL J, V112, P933
Niessen KA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08926-3
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
PARSONS DF, 1971, APPL OPTICS, V10, P1683
Singh R., 2013, PHYSICS
Strachan CJ, 2005, J PHARM SCI-US, V94, P837, DOI 10.1002/jps.20281
Tassev V., 2013, SPIE LASE, V9
Tekavec P., 2017, FRONTIERS OPTICS 201
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
Zeitler JA, 2009, EUR J PHARM BIOPHARM, V71, P2, DOI 10.1016/j.ejpb.2008.08.012
George, D. K. LaFave, T. J. Markelz, A. G. Mcnee, Ian Tekavec, Patrick Kozlov, Vladimir Schunemann, Peter
LaFave, Tim/0000-0003-2925-8657
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [R41GM125486] Funding Source: NIH RePORTER; NIGMS NIH HHSUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [R41 GM125486] Funding Source: Medline
0277-786x
1098311}, month = {Apr 15-17}, publisher = {Spie-Int Soc Optical Engineering}, address = {Baltimore, MD}, abstract = {

We demonstrate frequency domain THz anisotropy signature detection for protein crystal models using newly developed compact tunable narrow band THz sources based on Orientation Patterned Gallium Phosphide for turn-key spectroscopic systems.

}, keywords = {anisotropy, biomolecules, femtosecond, optical rectification, orientation patterned gallium phosphide, Terahertz, THz generation}, isbn = {978-1-5106-2632-4}, doi = {https://doi.org/10.1117/12.2519878}, author = {George, D. K. and LaFave, T. J. and Markelz, A. G. and McNee, I. and Tekavec, P. and Kozlov, V. and Schunemann, P.} } @article {247, title = {Increase in Dynamical Collectivity and Directionality of Orange Carotenoid Protein in the Photo-Protective State}, journal = {Biophysical Journal}, volume = {114}, number = {3}, year = {2018}, note = {ISI Document Delivery No.: GD5RB
Times Cited: 1
Cited Reference Count: 0
Deng, Yanting Luck, Catherine H. Romo, Tod D. Grossfield, Alan M. Bandara, Sepalika Ren, Zhong Yang, Xiaojing Markelz, Andrea G.
62nd Annual Meeting of the Biophysical-Society
Feb 17-21, 2018
San Francisco, CA
Biophys Soc
1

7
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {522A-522A}, type = {Meeting Abstract}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2854}, author = {Deng, Y. T. and Luck, C. H. and Romo, T. D. and Grossfield, A. M. and Bandara, S. and Ren, Z. and Yang, X. J. and Markelz, A. G.} } @conference {286, title = {Investigation of the Isotope Shift in Protein Collective Vibrations}, booktitle = {APS 2018}, volume = {A50.013}, year = {2018}, url = {http://meetings.aps.org/link/BAPS.2018.MAR.A50.13}, author = {Luck, C. and Xu, M. and Markelz, A.} } @conference {284, title = {Measuring Protein Intramolecular Dynamics with Terahertz Light: Functional Changes and Relevance to Biology}, booktitle = {APS 2018}, volume = {H50.001}, year = {2018}, url = {http://meetings.aps.org/link/BAPS.2018.MAR.H50.1}, author = {Xu, M. and Deng, Y. and Luck, C. and Sharma, A. and Markelz, A.} } @article {224, title = {The 2017 terahertz science and technology roadmap}, journal = {Journal of Physics D-Applied Physics}, volume = {50}, number = {4}, year = {2017}, note = {ISI Document Delivery No.: EI0HL
Times Cited: 541
Cited Reference Count: 209
Cited References:
Adam AJL, 2011, J INFRARED MILLIM TE, V32, P976, DOI 10.1007/s10762-011-9809-2
Ahmed SS, 2012, IEEE MICROW MAG, V13, P26, DOI 10.1109/MMM.2012.2205772
Alliance N., 2015, CISC VIS NETW IND GL, P1
[Anonymous], 2013, 178512012 IEEE
[Anonymous], 2014, IEEE T ELECT DEVICES, V61
[Anonymous], 2012, 178522016 IEEE
[Anonymous], 2015, P17852 IEEE
Appleby R, 2015, P SOC PHOTO-OPT INS, V9462
Arnone DD, 1999, PROC SPIE, V3828, P209, DOI 10.1117/12.361037
Ashworth PC, 2009, OPT EXPRESS, V17, P12444, DOI 10.1364/OE.17.012444
AUSTON DH, 1988, IEEE J QUANTUM ELECT, V24, P184, DOI 10.1109/3.114
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
Barker RJ., 2005, MODERN MICROWAVE MIL
Basov DN, 2011, REV MOD PHYS, V83, P471, DOI 10.1103/RevModPhys.83.471
Bauwens M. F., 2014, P IEEEMTT S INT MICR, P1, DOI [10.1109/MWSYM.2014.68486 07, DOI 10.1109/MWSYM.2014.6848607]
Beard MC, 2002, NANO LETT, V2, P983, DOI 10.1021/nl0256210
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Bechtel HA, 2014, P NATL ACAD SCI USA, V111, P7191, DOI 10.1073/pnas.1400502111
Belkin MA, 2008, OPT EXPRESS, V16, P3242, DOI 10.1364/OE.16.003242
Belkin MA, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/11/118002
Bell R., 2012, INTRO FOURIER TRANSF
Berry CW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2638
Blanchard F, 2011, OPT EXPRESS, V19, P8277, DOI 10.1364/OE.19.008277
Blau J, 2013, P FREE EL LAS FEL 20, P486
Booske JH, 2011, IEEE T THZ SCI TECHN, V1, P54, DOI 10.1109/TTHZ.2011.2151610
Booske JH, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2838240
Boppel S, 2012, 2012 IEEE 12TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), P77, DOI 10.1109/SiRF.2012.6160142
Burghoff D, 2014, NAT PHOTONICS, V8, P462, DOI 10.1038/nphoton.2014.85
Busch SF, 2014, J INFRARED MILLIM TE, V35, P993, DOI 10.1007/s10762-014-0113-9
Byrne MB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3579258
Carr GL, 2002, NATURE, V420, P153, DOI 10.1038/nature01175
Carranza IE, 2015, IEEE T THZ SCI TECHN, V5, P892, DOI 10.1109/TTHZ.2015.2463673
Castro-Camus E, 2007, OPT EXPRESS, V15, P7047, DOI 10.1364/OE.15.007047
Chan WL, 2007, REP PROG PHYS, V70, P1325, DOI 10.1088/0034-4885/70/8/R02
Chattopadhyay G, 2011, IEEE T THZ SCI TECHN, V1, P33, DOI 10.1109/TTHZ.2011.2159561
Chen HT, 2003, APPL PHYS LETT, V83, P3009, DOI 10.1063/1.1616668
Chen JN, 2012, NATURE, V487, P77, DOI 10.1038/nature11254
Cocker T L, 2016, J PHYS D, V16, P1421
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
Coleman B, 2001, Issue Brief (Public Policy Inst (Am Assoc Retired Pers)), P1
Cooper KB, 2014, IEEE MICROW MAG, V15, P51, DOI 10.1109/MMM.2014.2356092
Cruz F C, 2007, C MICR OPT
Cunningham J, 2010, ELECTRON LETT, V46, pS34, DOI 10.1049/el.2010.3317
Dean P, 2011, OPT LETT, V36, P2587, DOI 10.1364/OL.36.002587
Dietz RJB, 2014, OPT LETT, V39, P6482, DOI 10.1364/OL.39.006482
Dietz RJB, 2014, OPT EXPRESS, V22, P19411, DOI 10.1364/OE.22.019411
Dobrovolsky V, 2007, SEMICOND SCI TECH, V22, P103, DOI 10.1088/0268-1242/22/2/017
Ducournau G, 2014, IEEE T THZ SCI TECHN, V4, P328, DOI 10.1109/TTHZ.2014.2309006
Dunsmore J.P., 2012, HDB MICROWAVE COMPON
Duvillaret L, 1999, APPL OPTICS, V38, P409, DOI 10.1364/AO.38.000409
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fathololoumi S, 2012, OPT EXPRESS, V20, P3866, DOI 10.1364/OE.20.003866
Fausti D, 2011, SCIENCE, V331, P189, DOI 10.1126/science.1197294
Federici J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3386413
Fei Z, 2012, NATURE, V487, P82, DOI 10.1038/nature11253
FETTERMAN HR, 1974, APPL PHYS LETT, V24, P70, DOI 10.1063/1.1655098
Freeman JR, 2013, OPT EXPRESS, V21, P16162, DOI 10.1364/OE.21.016162
Frisk U, 2003, ASTRON ASTROPHYS, V402, pL27, DOI 10.1051/0004-6361:20030335
Garet F, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890732
Gavrilov NG, 2007, NUCL INSTRUM METH A, V575, P54, DOI 10.1016/j.nima.2007.01.023
Gensch M., 2013, P 35 INT FREE EL LAS, P474
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giliberti V, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4819734
Grant J, 2013, LASER PHOTONICS REV, V7, P1043, DOI 10.1002/lpor.201300087
Green B, 2016, SCI REP-UK, V6, DOI 10.1038/srep22256
Griffith P.R., 2007, FOURIER TRANSFORM IN
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Gruene P, 2008, SCIENCE, V321, P674, DOI 10.1126/science.1161166
Han NR, 2014, OPT LETT, V39, P3480, DOI 10.1364/OL.39.003480
Han RN, 2013, IEEE J SOLID-ST CIRC, V48, P2296, DOI 10.1109/JSSC.2013.2269856
Hanham SM, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4927242
Hassel J, 2015, PROC SPIE, V9651, DOI 10.1117/12.2197522
Hauri CP, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3655331
He W, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4932099
Hebling J, 2002, OPT EXPRESS, V10, P1161, DOI 10.1364/OE.10.001161
Heinz E, 2015, J INFRARED MILLIM TE, V36, P879, DOI 10.1007/s10762-015-0170-8
Henry SC, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.9.091603
Hesler J L, 2006, P 7 INT S SPAC TER T, P215
Hintzsche H, 2012, CRIT REV ENV SCI TEC, V42, P2408, DOI 10.1080/10643389.2011.574206
Hishida M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.158102
Ho IC, 2010, OPT EXPRESS, V18, P2872, DOI 10.1364/OE.18.002872
HU BB, 1995, OPT LETT, V20, P1716, DOI 10.1364/OL.20.001716
Huang C, 2012, PHYS REV B, V85
Huber R, 2001, NATURE, V414, P286, DOI 10.1038/35104522
Jankowiak A., 2013, Synchrotron Radiation News, V26, P22, DOI 10.1080/08940886.2013.791212
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Jepsen PU, 2005, OPT LETT, V30, P29, DOI 10.1364/OL.30.000029
JUICE-Jupiter Icy Moons Explorer, 2014, SRE20141 JUICE EUR S, P1
Kallfass I, 2011, IEEE T THZ SCI TECHN, V1, P477, DOI 10.1109/TTHZ.2011.2160021
Kampfrath T, 2013, NAT PHOTONICS, V7, P680, DOI [10.1038/nphoton.2013.184, 10.1038/NPHOTON.2013.184]
Kan T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9422
Karpowicz N, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2828709
Kehr SC, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.256403
Kemp MC, 2011, IEEE T THZ SCI TECHN, V1, P282, DOI 10.1109/TTHZ.2011.2159647
Khalid A, 2014, J APPL PHYS, V115, DOI 10.1063/1.4868705
Kirley MP, 2015, IEEE T THZ SCI TECHN, V5, P1012, DOI 10.1109/TTHZ.2015.2468074
Kiwa T, 2003, OPT LETT, V28, P2058, DOI 10.1364/OL.28.002058
Koch M, 2001, NATO SCI SER II MATH, V27, P241
Koenig S, 2013, NAT PHOTONICS, V7, P977, DOI [10.1038/nphoton.2013.275, 10.1038/NPHOTON.2013.275]
Kohler R, 2002, NATURE, V417, P156, DOI 10.1038/417156a
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
Kosarev A, 2010, SOLID STATE ELECTRON, V54, P417, DOI 10.1016/j.sse.2009.12.032
Kundu I, 2014, OPT EXPRESS, V22, P16595, DOI 10.1364/OE.22.016595
Kuznetsov SA, 2010, KEY ENG MATER, V437, P276, DOI 10.4028/www.scientific.net/KEM.437.276
Langevin Y, 2005, PAYLOAD MISSION DEFI
LaRue JL, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.036103
Leitenstorfer A, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/045016
Leitner DM, 2006, INT REV PHYS CHEM, V25, P553, DOI 10.1080/01442350600862117
Li LH, 2014, ELECTRON LETT, V50, P309, DOI 10.1049/el.2013.4035
Liu L, 2010, IEEE MICROW WIREL CO, V20, P504, DOI 10.1109/LMWC.2010.2055553
Liu SC, 2016, OPT EXPRESS, V24, P2728, DOI 10.1364/OE.24.002728
Lu X H, 2008, P SOC PHOTO-OPT INS, V7277
Luukanen A, 2003, APPL PHYS LETT, V82, P3970, DOI 10.1063/1.1579562
Mann C, 2009, P SOC PHOTO-OPT INS, V7311, P3970
Mickan S, 2004, PROC SPIE, V5277, P54, DOI 10.1117/12.530386
Mineo M, 2010, IEEE T ELECTRON DEV, V57, P3169, DOI 10.1109/TED.2010.2071876
Mittleman DM, 1996, IEEE J SEL TOP QUANT, V2, P679, DOI 10.1109/2944.571768
Mittleman DM, 1999, APPL PHYS B-LASERS O, V68, P1085, DOI 10.1007/s003400050750
Moon K, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4733475
Muller AS, 2010, REV ACCEL SCI TECH, V3, P165, DOI 10.1142/S1793626810000427
Muller R, 2015, J INFRARED MILLIM TE, V36, P654, DOI 10.1007/s10762-015-0163-7
Naftaly M, 2015, TERAHERTZ METROLOGY, P1
Nagai M, 2015, OPT EXPRESS, V23, P4641, DOI 10.1364/OE.23.004641
Nagatsuma T, 2012, OPT EXPRESS, V21, P477
Nagel M, 2002, APPL PHYS LETT, V80, P154, DOI 10.1063/1.1428619
Navarro-Cia M, 2015, J INFRARED MILLIM TE, V36, P542, DOI 10.1007/s10762-015-0157-5
Nielsen K, 2009, OPT EXPRESS, V17, P8592, DOI 10.1364/OE.17.008592
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
Nordquist CD, 2011, IEEE J SEL TOP QUANT, V17, P130, DOI 10.1109/JSTQE.2010.2049095
Oh SJ, 2012, J INFRARED MILLIM TE, V33, P74, DOI 10.1007/s10762-011-9847-9
Ojefors E, 2009, IEEE J SOLID-ST CIRC, V44, P1968, DOI 10.1109/JSSC.2009.2021911
Ortolani M, 2008, PHYS REV LETT, V97
Ozerov M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.157205
Paoloni C, 2013, IEEE T ELECTRON DEV, V60, P1236, DOI 10.1109/TED.2013.2240686
Parrott EPJ, 2015, APPL SPECTROSC, V69, P1, DOI 10.1366/14-07707
Patrashin M, 2015, IEEE T ELECTRON DEV, V62, P1068, DOI 10.1109/TED.2015.2393358
Peiponen K. E., 2013, TERAHERTZ SPECTROSCO, V171
Peng K, 2015, NANO LETT, V15, P206, DOI 10.1021/nl5033843
Pickwell E, 2004, APPL PHYS LETT, V84, P2190, DOI 10.1063/1.1688448
Ponnampalam L, 2011, J LIGHTWAVE TECHNOL, V29, P2229, DOI 10.1109/JLT.2011.2158186
Pupeza I, 2007, OPT EXPRESS, V15, P4335, DOI 10.1364/OE.15.004335
Rauter P, 2015, LASER PHOTONICS REV, V9, P452, DOI 10.1002/lpor.201500095
Reid CB, 2011, PHYS MED BIOL, V56, P4333, DOI 10.1088/0031-9155/56/14/008
Reid J R, 2012, IEEE 12 TOP M SIL MO, P17
Rosch M, 2015, NAT PHOTONICS, V9, P42, DOI [10.1038/nphoton.2014.279, 10.1038/NPHOTON.2014.279]
Rudd JV, 2000, PROC SPIE, V3934, P27, DOI 10.1117/12.386344
Rymanov V, 2015, PHOTONICS, V2, DOI 10.3390/photonics2041152
SANTOS Daisy Conceicao, 2014, THESIS
Scherger B, 2011, APPL OPTICS, V50, P2256, DOI 10.1364/AO.50.002256
Schleicher JM, 2009, J APPL PHYS, V105, DOI 10.1063/1.3133093
Schumann S, 2012, OPT EXPRESS, V20, P19200, DOI 10.1364/OE.20.019200
Seeds AJ, 2015, J LIGHTWAVE TECHNOL, V33, P579, DOI 10.1109/JLT.2014.2355137
Sell A, 2008, OPT LETT, V33, P2767, DOI 10.1364/OL.33.002767
Shams H, 2015, IEEE PHOTONICS J, V7, DOI 10.1109/JPHOT.2015.2438437
Shams H, 2014, OPT EXPRESS, V22, P23465, DOI 10.1364/OE.22.023465
Shen YC, 2004, APPL PHYS LETT, V85, P164, DOI 10.1063/1.1768313
Simoens F., 2014, PHILOS T A, V372, P1
Simoens F, 2011, 36 INT C INFR MILL T, P1
Singh A, 2015, OPT EXPRESS, V23, P6656, DOI 10.1364/OE.23.006656
Sirtori C, 2013, NAT PHOTONICS, V7, P691, DOI [10.1038/NPHOTON.2013.208, 10.1038/nphoton.2013.208]
SMITH PR, 1988, IEEE J QUANTUM ELECT, V24, P255, DOI 10.1109/3.121
Son JH, 2013, NANOTECHNOLOGY, V24, DOI 10.1088/0957-4484/24/21/214001
Swinyard B, 2013, SPIE SENSORS SYSTEMS
Sy S, 2010, PHYS MED BIOL, V55, P7587, DOI 10.1088/0031-9155/55/24/013
Taylor ZD, 2015, IEEE T THZ SCI TECHN, V5, P184, DOI 10.1109/TTHZ.2015.2392628
Teppati V, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139567626
Tewari P, 2012, P SPIE, V8261
Thomas B., 2014, P 39 INT C INFR MILL, P1
Thumm M, 2014, KIT SCI REPORTS, V7693
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Truong BCQ, 2015, IEEE T BIO-MED ENG, V62, P699, DOI 10.1109/TBME.2014.2364025
Turcinkova D, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4916653
Turner GM, 2002, J PHYS CHEM B, V106, P11716, DOI 10.1021/jp025844e
van der Valk NCJ, 2002, APPL PHYS LETT, V81, P1558, DOI 10.1063/1.1503404
van Dijk F, 2014, IEEE PHOTONIC TECH L, V26, P965, DOI 10.1109/LPT.2014.2309353
Vicario C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.213901
Vinh NQ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4918708
Vitiello MS, 2012, NAT PHOTONICS, V6, P525, DOI 10.1038/nphoton.2012.145
Vitiello MS, 2015, OPT EXPRESS, V23, P5167, DOI 10.1364/OE.23.005167
Vitiello MS, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6884
Wade A, 2009, NAT PHOTONICS, V3, P41, DOI 10.1038/NPHOTON.2008.251
Wallace B., 2015, SPIE NEWSROOM, DOI [10.1117/2.1201503.005871, DOI 10.1117/2.1201503.005871]
Wallace VP, 2004, BRIT J DERMATOL, V151, P424, DOI 10.1111/j.1365-2133.2004.06129.x
Wang FH, 2015, OPTICA, V2, P944, DOI 10.1364/OPTICA.2.000944
Weightman P, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/053001
Wienold M, 2014, OPT EXPRESS, V22, P3334, DOI 10.1364/OE.22.003334
Wilk R, 2007, C LAS EL BALT MD
Williams BS, 2006, ELECTRON LETT, V42, P89, DOI 10.1049/el:20063921
Williams GP, 2006, REP PROG PHYS, V69, P301, DOI 10.1088/0034-4885/69/2/R01
Williams GP, 2008, NAT PHYS, V4, P356, DOI 10.1038/nphys958
Williams MRC, 2013, J PHYS CHEM B, V117, P10444, DOI 10.1021/jp406730a
Williams R, 2013, PHYS MED BIOL, V58, P373, DOI 10.1088/0031-9155/58/2/373
Withayachumnankul W, 2008, J OPT SOC AM B, V25, P1059, DOI 10.1364/JOSAB.25.001059
Woerner M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/025039
Woodward RM, 2003, J INVEST DERMATOL, V120, P72, DOI 10.1046/j.1523-1747.2003.12013.x
Wu X, OPT LETT, V39, P5403
Wu ZR, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790427
Xu J, 2003, PROC SPIE, V5268, P19, DOI 10.1117/12.518533
Yamashita M, 2011, OPT EXPRESS, V19, P10864, DOI 10.1364/OE.19.010864
Yan F, 2013, J INFRARED MILLIM TE, V34, P489, DOI 10.1007/s10762-013-0005-4
Yang SH, 2014, IEEE T THZ SCI TECHN, V4, P575, DOI 10.1109/TTHZ.2014.2342505
Yeh KL, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2734374
Zamora A, 2015, IEEE MTT S INT MICR
Zhao JF, 2011, IEEE T ELECTRON DEV, V58, P1221, DOI 10.1109/TED.2011.2109723
Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431]
Zhou Y, 2010, PROG ELECTROMAGN RES, V105, P71, DOI 10.2528/PIER10041806
Zibik EA, 2009, NAT MATER, V8, P803, DOI [10.1038/nmat2511, 10.1038/NMAT2511]
Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B.
Huggard, Peter/U-2150-2019; Konishi, Kuniaki/AAN-3624-2020; Zeitler, J. Axel/B-4885-2008; Paoloni, Claudio/AAH-9824-2019; Hoffmann, Matthias C./N-1082-2019; Wallace, Vincent P/A-9320-2012; Johnston, Michael/B-9813-2008; Castro-Camus, Enrique/V-6861-2019; Krozer, Viktor/P-5623-2014; Hoffmann, Matthias C/B-3893-2009; PAOLONI, CLAUDIO/AAA-3211-2020; Gonokami, Makoto/F-3641-2012; Shams, Haymen/H-3754-2012; Ridler, Nick/AAN-9637-2020; Huber, Rupert/N-4126-2018
Konishi, Kuniaki/0000-0003-2389-9787; Zeitler, J. Axel/0000-0002-4958-0582; Hoffmann, Matthias C./0000-0002-3596-9853; Wallace, Vincent P/0000-0003-3814-5400; Johnston, Michael/0000-0002-0301-8033; Krozer, Viktor/0000-0002-2387-1947; Hoffmann, Matthias C/0000-0002-3596-9853; PAOLONI, CLAUDIO/0000-0002-0265-0862; Shams, Haymen/0000-0002-5333-6478; Huber, Rupert/0000-0001-6617-9283; Davies, Alexander/0000-0002-1987-4846; Seeds, Alwyn/0000-0002-5228-627X; Castro-Camus, Enrique/0000-0002-8218-9155; Cunningham, John/0000-0002-1805-9743; Naftaly, Mira/0000-0002-0671-822X; Cumming, David/0000-0002-7838-8362
Engineering and Physical Sciences Research CouncilUK Research \& Innovation (UKRI)Engineering \& Physical Sciences Research Council (EPSRC) [EP/P015883/1, EP/M00306X/1, EP/K023349/1, EP/M017095/1, EP/L026597/1, EP/J017671/1] Funding Source: researchfish; Natural Environment Research CouncilUK Research \& Innovation (UKRI)NERC Natural Environment Research Council [NER/Z/S/2003/00642, NE/L012375/1, NER/Z/S/2000/01292] Funding Source: researchfish; Science and Technology Facilities CouncilUK Research \& Innovation (UKRI)Science \& Technology Facilities Council (STFC) [ST/P002056/1] Funding Source: researchfish; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Molecular and Cellular BioscienceNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1616529] Funding Source: National Science Foundation
566
30
462
Iop publishing ltd
Bristol
1361-6463}, month = {Feb}, pages = {49}, type = {Review}, abstract = {

Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to {\textquoteright}real world{\textquoteright} applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

}, keywords = {ex-vivo, generation, metal wave-guides, near-field, performance, photoconductive emitters, Physics, quantum-cascade lasers, radiation, semiconductors, Terahertz, thz, time-domain spectroscopy}, isbn = {0022-3727}, doi = {https://doi.org/10.1088/1361-6463/50/4/043001}, author = {Dhillon, S. S. and Vitiello, M. S. and Linfield, E. H. and Davies, A. G. and Hoffmann, M. C. and Booske, J. and Paoloni, C. and Gensch, M. and Weightman, P. and Williams, G. P. and Castro-Camus, E. and Cumming, D. R. S. and Simoens, F. and Escorcia-Carranza, I. and Grant, J. and Lucyszyn, S. and Kuwata-Gonokami, M. and Konishi, K. and Koch, M. and Schmuttenmaer, C. A. and Cocker, T. L. and Huber, R. and Markelz, A. G. and Taylor, Z. D. and Wallace, V. P. and Zeitler, J. A. and Sibik, J. and Korter, T. M. and Ellison, B. and Rea, S. and Goldsmith, P. and Cooper, K. B. and Appleby, R. and Pardo, D. and Huggard, P. G. and Krozer, V. and Shams, H. and Fice, M. and Renaud, C. and Seeds, A. and Stohr, A. and Naftaly, M. and Ridler, N. and Clarke, R. and Cunningham, J. E. and Johnston, M. B.} } @conference {288, title = {Global Picosecond Structural Dynamics of Orange Carotenoid Protein in Photo/Chemical Activated Signaling States}, booktitle = {APS 2017 S4.002}, year = {2017}, month = {03/2017}, url = {http://meetings.aps.org/link/BAPS.2017.MAR.S4.2}, author = {Deng, Y. and Xu, M. and Liu, H. and Blankenship, R. and Markelz, A.} } @article {250, title = {Orange Carotenoid Protein Picosecond Dynamics Changes with Photo and Chemical Activation}, journal = {Biophysical Journal}, volume = {112}, number = {3}, year = {2017}, note = {ISI Document Delivery No.: EW3DS
Times Cited: 0
Cited Reference Count: 3
Cited References:
King JD, 2014, FEBS LETT, V588, P4561, DOI 10.1016/j.febslet.2014.10.024
Wilson A, 2006, PLANT CELL, V18, P992, DOI 10.1105/tpc.105.040121
Wilson A, 2008, P NATL ACAD SCI USA, V105, P12075, DOI 10.1073/pnas.0804636105
Deng, Yanting Xu, Mengyang Liu, Haijun Blankenship, Robert E. Markelz, Andrea G.
58th Annual Meeting of the Biophysical-Society
Feb 15-19, 2014
San Francisco, CA
Biophys Soc
Liu, Haijun/0000-0003-0537-0302

14
Cell press
Cambridge
1542-0086
1}, month = {Feb}, pages = {441A-441A}, type = {Meeting Abstract}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2016.11.2355}, author = {Deng, Y. T. and Xu, M. Y. and Liu, H. J. and Blankenship, R. E. and Markelz, A. G.} } @article {233, title = {Hydration and temperature interdependence of protein picosecond dynamics}, journal = {Physical Chemistry Chemical Physics}, volume = {14}, number = {18}, year = {2012}, note = {ISI Document Delivery No.: 928AI
Times Cited: 25
Cited Reference Count: 39
Cited References:
Bonvicini D, 1998, IEEE T DIELECT EL IN, V5, P33, DOI 10.1109/94.660757
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brovchenko I, 2008, CHEMPHYSCHEM, V9, P2695, DOI 10.1002/cphc.200800662
Chen G, 2008, PHILOS MAG, V88, P3877, DOI 10.1080/14786430802585117
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103
Ding T, 2011, J PHYS CHEM A, V115, P11559, DOI 10.1021/jp200553d
Doster W, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.098101
DOSTER W, 1989, NATURE, V337, P754, DOI 10.1038/337754a0
Doster W, 2010, BBA-PROTEINS PROTEOM, V1804, P3, DOI 10.1016/j.bbapap.2009.06.019
Ebbinghaus S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104
Frauenfelder H, 2003, P NATL ACAD SCI USA, V100, P8615, DOI 10.1073/pnas.1633688100
GASCOYNE PRC, 1977, J CHEM SOC FARAD T 1, V73, P171, DOI 10.1039/f19777300171
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
HARVEY SC, 1972, J PHYS CHEM-US, V76, P2987, DOI 10.1021/j100665a011
He YF, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.178103
Kauzmann W, 1942, REV MOD PHYS, V14, P0012, DOI 10.1103/RevModPhys.14.12
Khodadadi S, 2010, BBA-PROTEINS PROTEOM, V1804, P15, DOI 10.1016/j.bbapap.2009.05.006
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Makarov VA, 2000, BIOPHYS J, V79, P2966, DOI 10.1016/S0006-3495(00)76533-7
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Markelz AG, 2007, CHEM PHYS LETT, V442, P413, DOI 10.1016/j.cplett.2007.05.080
Oleinikova A, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.247802
Oleinikova A, 2005, J PHYS CHEM B, V109, P1988, DOI 10.1021/jp045903j
Oleinikova A, 2006, MOL PHYS, V104, P3841, DOI 10.1080/00268970601108229
Paciaroni A, 2008, PHILOS MAG, V88, P4071, DOI 10.1080/14786430802464263
Parak FG, 2003, CURR OPIN STRUC BIOL, V13, P552, DOI 10.1016/j.sbi.2003.09.004
Pawlus S, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.108103
Roh JH, 2006, BIOPHYS J, V91, P2573, DOI 10.1529/biophysj.106.082214
Roh JH, 2009, BIOPHYS J, V96, P2755, DOI 10.1016/j.bpj.2008.12.3895
Roh JH, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.038101
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Schiro G, 2011, J PHYS CHEM LETT, V2, P2275, DOI 10.1021/jz200797g
Shen YC, 2003, APPL PHYS LETT, V82, P2350, DOI 10.1063/1.1565680
Soderholm S, 2000, J RAMAN SPECTROSC, V31, P995, DOI 10.1002/1097-4555(200011)31:11<995::AID-JRS634>3.0.CO;2-L
Whitmire SE, 2003, BIOPHYS J, V85, P1269, DOI 10.1016/S0006-3495(03)74562-7
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Zaccai G, 2000, SCIENCE, V288, P1604, DOI 10.1126/science.288.5471.1604
Zhang CF, 2006, J PHYS CHEM B, V110, P23607, DOI 10.1021/jp063545+
Lipps, Ferdinand Levy, Seth Markelz, A. G.
Markelz, Andrea/0000-0003-0443-4319
26

66
Royal soc chemistry
Cambridge
1463-9084}, pages = {6375-6381}, type = {Article}, abstract = {

We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at \>0.27 h (g water per g protein), however the permittivity change is strongest for frequencies \<1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies \>1 THz, and 0.27 h for frequencies \<1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of similar to 5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network.

}, keywords = {Chemistry, dielectric-relaxation, fluctuations, inelastic neutron-scattering, lysozyme, myoglobin, percolation, Physics, spectra, spectroscopy, terahertz beams, transition, water}, isbn = {1463-9076}, doi = {https://doi.org/10.1039/C2CP23760A}, author = {Lipps, F. and Levy, S. and Markelz, A. G.} } @article {221, title = {Terahertz Response and Colossal Kerr Rotation from the Surface States of the Topological Insulator Bi2Se3}, journal = {Physical Review Letters}, volume = {108}, number = {8}, year = {2012}, note = {ISI Document Delivery No.: 896NY
Times Cited: 164
Cited Reference Count: 35
Cited References:
Akhmerov AR, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.216404
Alpichshev Z, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.016401
Analytis JG, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205407
Bansal N., ARXIV11045709
Benia HM, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.177602
Bianchi M, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1131
Butch NP, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.241301
Chen J, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.241304
Chen YL, 2009, SCIENCE, V325, P178, DOI 10.1126/science.1173034
Essin AM, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.146805
Eto K, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195309
Fu L, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.045302
Fu L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.096407
Hsieh D, 2008, NATURE, V452, P970, DOI 10.1038/nature06843
Hsieh D, 2009, NATURE, V460, P1101, DOI 10.1038/nature08234
Jenkins GS, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125120
King PDC, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.096802
LaForge AD, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.125120
Lan YP, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.205109
Maciejko J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.166803
Moore JE, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.121306
Qi XL, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.195424
Qu DX, 2010, SCIENCE, V329, P821, DOI 10.1126/science.1189792
Roushan P, 2009, NATURE, V460, P1106, DOI 10.1038/nature08308
Roy R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.195322
Steinberg H, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.233101
Sushkov AB, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125110
THOULESS DJ, 1982, PHYS REV LETT, V49, P405, DOI 10.1103/PhysRevLett.49.405
Tkachov G, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.035405
Tse WK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.161104
Tse WK, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.057401
VONKLITZING K, 1980, PHYS REV LETT, V45, P494, DOI 10.1103/physrevlett.45.494
Xia Y, 2009, NAT PHYS, V5, P398, DOI 10.1038/NPHYS1274
Xiong J., PHYSICA A E IN PRESS
Zhang XA, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.245107
Aguilar, R. Valdes Stier, A. V. Liu, W. Bilbro, L. S. George, D. K. Bansal, N. Wu, L. Cerne, J. Markelz, A. G. Oh, S. Armitage, N. P.
George, Deepu/J-9882-2014; Aguilar, Rolando Valdes/A-6637-2012; Liu, Wei/H-5999-2012; Wu, Liang/C-8715-2015
George, Deepu/0000-0003-0021-0705; Aguilar, Rolando Valdes/0000-0002-4321-4792; Wu, Liang/0000-0003-1696-7809; Markelz, Andrea/0000-0003-0443-4319
"Institute for Quantum Matter" DOE [DE-FG02-08ER46544]; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; NSFNational Science Foundation (NSF) [MRI-R2 0959989, DMR-1006078, DMR-0845464]; IAMDN of Rutgers University; ONROffice of Naval Research [N000140910749]; Division Of Materials ResearchNational Science Foundation (NSF)NSF - Directorate for Mathematical \& Physical Sciences (MPS) [0845464] Funding Source: National Science Foundation
The authors would like to thank H. D. Drew, J. Hancock, Z. Hao, G. S. Jenkins, A. Kuzmenko, A. MacDonald, N. A. Mecholsky, A. J. Pearson, O. Tchernyshyov, W-K. Tse, and Y. Wan for helpful discussions and/or correspondences. Support for the measurements at JHU was provided under the auspices of the "Institute for Quantum Matter" DOE DE-FG02-08ER46544 and the Gordon and Betty Moore Foundation. The work at UB was supported by NSF MRI-R2 0959989 and NSF DMR-1006078. The work at Rutgers was supported by IAMDN of Rutgers University, NSF DMR-0845464 and ONR N000140910749.
166
3
157
Amer physical soc
College pk}, month = {Feb}, pages = {5}, type = {Article}, abstract = {

We report the THz response of thin films of the topological insulator Bi2Se3. At low frequencies, transport is essentially thickness independent showing the dominant contribution of the surface electrons. Despite their extended exposure to ambient conditions, these surfaces exhibit robust properties including narrow, almost thickness-independent Drude peaks, and an unprecedentedly large polarization rotation of linearly polarized light reflected in an applied magnetic field. This Kerr rotation can be as large as 65 degrees and can be explained by a cyclotron resonance effect of the surface states.

}, keywords = {bi2te3, Physics}, isbn = {0031-9007}, doi = {https://doi.org/10.1103/physrevlett.108.087403}, author = {Aguilar, R. V. and Stier, A. V. and Liu, W. and Bilbro, L. S. and George, D. K. and Bansal, N. and Wu, L. and Cerne, J. and Markelz, A. G. and Oh, S. and Armitage, N. P.} } @proceedings {232, title = {The role of the protein surface on the local biological water dynamics}, volume = {7397}, year = {2009}, note = {ISI Document Delivery No.: BVQ85
Times Cited: 0
Cited Reference Count: 12
Cited References:
Balu R, 2008, BIOPHYS J, V94, P3217, DOI 10.1529/biophysj.107.105163
Bergner A, 2005, REV SCI INSTRUM, V76, DOI 10.1063/1.1928427
Born B, 2009, J AM CHEM SOC, V131, P3752, DOI 10.1021/ja808997y
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
He YF, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.178103
Heugen U, 2006, P NATL ACAD SCI USA, V103, P12301, DOI 10.1073/pnas.0604897103
Jepsen PU, 2007, OPT EXPRESS, V15, P14717, DOI 10.1364/OE.15.014717
Kindt JT, 1996, J PHYS CHEM-US, V100, P10373, DOI 10.1021/jp960141g
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
THRANE L, 1995, CHEM PHYS LETT, V240, P330, DOI 10.1016/0009-2614(95)00543-D
Xu J, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2151267
Yada H, 2008, CHEM PHYS LETT, V464, P166, DOI 10.1016/j.cplett.2008.09.015
Liang, Wei He, Yunfen George, Deepu Markelz, A. G.
Proceedings Paper
Conference on Biosensing II
Aug 04-06, 2009
San Diego, CA
Spie
George, Deepu/J-9882-2014
George, Deepu/0000-0003-0021-0705; Markelz, Andrea/0000-0003-0443-4319
1000 20th st, po box 10, bellingham, wa 98227-0010 usa
0277-786x
73970t}, publisher = {Spie-Int Soc Optical Engineering}, address = {Bellingham}, abstract = {

Protein function is reliant on structural flexibility and this flexibility is slaved to the surrounding solvent. Here we discuss how the exposed surface of the protein influences the solvent dynamics and thereby influences the protein{\textquoteright}s own structural dynamics. We discuss measurements of the THz absorption of water in the presence of hydrophilic and hydrophobic surfaces.

}, keywords = {alanine, dynamics, hydration, lysine, lysozyme, proteins, relaxation, spectroscopy, Terahertz, thz}, isbn = {978-0-8194-7687-6}, doi = {https://doi.org/10.1117/12.828697}, author = {Liang, W. and He, Y. F. and George, D. and Markelz, A. G.}, editor = {Razeghi, M. and Mohseni, H.} } @proceedings {308, title = {Ultrafast Carriers Dynamics in GaSb/Mn Random Alloys}, year = {2006}, address = {Vienna Austria}, doi = {10.1063/1.2730382}, author = {Ye, S. and Knab, J. and Chen, J.-Y. and Wang, S. and Cheon, M. and Luo, H. and Markelz, A. G.} } @proceedings {181, title = {Terahertz grid frequency doublers}, year = {1995}, publisher = {Citeseer}, url = {https://www.nrao.edu/meetings/isstt/papers/1995/1995199206.pdf}, author = {Chiao, Jung-Chih and Markelz, Andrea and Li, Yongjun and Hacker, Jonathan and Crowe, Thomas and Allen, James and Rutledge, David} } @article {257, title = {PROBING TERAHERTZ DYNAMICS IN SEMICONDUCTOR NANOSTRUCTURES WITH UCSB FREE-ELECTRON LASERS}, journal = {Journal of Luminescence}, volume = {60-1}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017; Guimaraes, Paulo Sergio Soares/B-6918-2012
Sherwin, Mark S/0000-0002-3869-1893; Guimaraes, Paulo Sergio Soares/0000-0002-0113-2641; Markelz, Andrea/0000-0003-0443-4319
1993 International Conference on Luminescence (ICL 93)
Aug 09-13, 1993
Univ connecticut, storrs, ct
Univ connecticut; opt soc amer; amer phys soc; ieee, laser \& electro opt soc; int union pure \& appl phys; int sci fdn; univ connecticut res fdn
3}, month = {Apr}, pages = {250-255}, abstract = {

The UCSB free-electron lasers provide kilowatts of continuously tunable radiation from 120 GHz to 4.8 THz. They have the most impact on terahertz science and technology that require a tunable, high power source to explore non-linear dynamics or that sacrifice incident power to recover the linear response of systems with very small cross-section. We describe three experiments that demonstrate the utility of these lasers in experiments on the terahertz dynamics of semiconductor nanostructures: (i) terahertz dynamics of resonant tunneling diodes, (ii) saturation spectroscopy of quantum wells and (iii) photon-assisted tunneling in superlattices.

}, isbn = {0022-2313}, doi = {10.1016/0022-2313(94)90142-2}, author = {Allen, S. J. and Craig, K. and Felix, C. L. and Guimaraes, P. and Heyman, J. N. and Kaminski, J. P. and Keay, B. J. and Markelz, A. G. and Ramian, G. and Scott, J. S. and Sherwin, M. S. and Campman, K. L. and Hopkins, P. F. and Gossard, A. C. and Chow, D. and Lui, M. and Liu, T. Y.} } @article {277, title = {SPECIFIC-HEAT MEASUREMENTS ON SUPERCONDUCTING BI-CA-SR-CU AND TL-CA-BA-CU OXIDES - ABSENCE OF A LINEAR TERM IN THE SPECIFIC-HEAT OF BI-CA-SR-CU OXIDES}, journal = {Physical Review B}, volume = {38}, number = {16}, year = {1988}, note = {Fisher, Robert Anthony/H-6779-2019
Markelz, Andrea/0000-0003-0443-4319
B
68}, month = {Dec 1}, pages = {11942-11945}, isbn = {0163-1829}, doi = {10.1103/PhysRevB.38.11942}, author = {Fisher, R. A. and Kim, S. and Lacy, S. E. and Phillips, N. E. and Morris, D. E. and Markelz, A. G. and Wei, J. Y. T. and Ginley, D. S.} }