@article {252, title = {Long Range Correlated Motions of TIM and their Possible Influence on Enzyme Function}, journal = {Biophysical Journal}, volume = {118}, number = {3}, year = {2020}, note = {ISI Document Delivery No.: KK8YX
Times Cited: 0
Cited Reference Count: 4
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Niessen K.A. M.Y., 2017, BIOPHYS J, DOI [10.1016/j.bpj.2016.12.049.3., DOI 10.1016/J.BPJ.2016.12.049.3]
Niessen K, 2019, OPT EXPRESS, V27, P28036, DOI 10.1364/OE.27.028036
Niessen KA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08926-3
McKinney, Jeffrey A. Deng, Yanting George, Deepu K. Richard, John Markelz, Andrea G.
64th Annual Meeting of the Biophysical-Society
Feb 15-19, 2020
San Diego, CA
Biophys Soc
NSFNational Science Foundation (NSF) [DBI 1556359, MCB 1616529]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NIH STTRUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USA [R41 GM125486.1]
This work is supported by NSF grants DBI 1556359 and MCB 1616529, DOE grant DE-SC0016317 and NIH STTR R41 GM125486.1.

1
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {207A-207A}, type = {Meeting Abstract}, abstract = {

The alpha-beta barrel structure of triosephosphate isomerase (TIM) is possibly the most common among enzymes. In the case of TIM, structural dynamics are known to be essential to function. In particular the stabilization of the binding pocket by a phosphodianion {\textquotedblleft}handle{\textquotedblright} of the substrate and the closing of catalytic site loops 6 and 7 over the substrate. Loop 6 moves by as much as 7 Angstroms with binding. Recently a mutant survey for human TIM (hsTIM) found kcat can change significantly for a single mutation distant from the catalytic site. Crystallographic measurements find no structural change with the mutation, suggesting a dynamical mechanism for the allosteric effect. Here we use Stationary Sample Anisotropic Terahertz Microscopy (SSATM) to measure the long-range intramolecular vibrations and determine if specific vibrations couple the allosteric and catalytic sites. SSATM isolated protein long-range structural vibrations based on the dominant displacement direction [1-4]. We examine if specific vibrational bands are associate with loop 6 and loop 7 flexibility.

}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.1240}, author = {McKinney, J. A. and Deng, Y. T. and George, D. K. and Richard, J. and Markelz, A. G.} } @article {241, title = {Persistent Protein Motions in a Rugged Energy Landscape Revealed by Normal Mode Ensemble Analysis}, journal = {Journal of Chemical Information and Modeling}, volume = {60}, number = {12}, year = {2020}, note = {ISI Document Delivery No.: PT8QA
Times Cited: 0
Cited Reference Count: 47
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Bahar I, 2007, CURR OPIN STRUC BIOL, V17, P633, DOI 10.1016/j.sbi.2007.09.011
Balog E, 2011, J PHYS CHEM B, V115, P6811, DOI 10.1021/jp108493g
Castro-Camus E, 2008, CHEM PHYS LETT, V455, P289, DOI 10.1016/j.cplett.2008.02.084
Cerutti DS, 2008, BIOCHEMISTRY-US, V47, P12065, DOI 10.1021/bi800894u
Cerutti DS, 2019, WIRES COMPUT MOL SCI, V9, DOI 10.1002/wcms.1402
CHO M, 1994, J CHEM PHYS, V100, P6672, DOI 10.1063/1.467027
Choi JH, 2014, J PHYS CHEM B, V118, P12837, DOI 10.1021/jp508547y
Cote Y, 2017, BIOPHYS J, V112, P2575, DOI 10.1016/j.bpj.2017.05.018
Dong J, 1999, ACTA CRYSTALLOGR D, V55, P745, DOI 10.1107/S0907444998016047
ESSMANN U, 1995, J CHEM PHYS, V103, P8577, DOI 10.1063/1.470117
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
FELLER SE, 1995, J CHEM PHYS, V103, P4613, DOI 10.1063/1.470648
Gerek ZN, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1002154
GO N, 1983, P NATL ACAD SCI-BIOL, V80, P3696, DOI 10.1073/pnas.80.12.3696
Grossfield A, 2019, LIVING J COMPUT MOL, V1, P5067, DOI DOI 10.33011/LIVEC0MS.1.1.5067
Grossfield A, 2009, ANN REP COMP CHEM, V5, P23, DOI 10.1016/S1574-1400(09)00502-7
He YF, 2011, BIOPHYS J, V100, P1058, DOI 10.1016/j.bpj.2010.12.3731
HORIUCHI T, 1991, PROTEINS, V10, P106, DOI 10.1002/prot.340100204
Huang J, 2013, J COMPUT CHEM, V34, P2135, DOI 10.1002/jcc.23354
Katebi AR, 2014, PROTEIN SCI, V23, P213, DOI 10.1002/pro.2407
Kindt JT, 1997, J CHEM PHYS, V106, P4389, DOI 10.1063/1.473486
Kroll J, 2007, VIB SPECTROSC, V43, P324, DOI 10.1016/j.vibspec.2006.03.010
Leioatts N, 2012, J CHEM THEORY COMPUT, V8, P2424, DOI 10.1021/ct3000316
Lerbret A, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3273218
Meinhold L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.138101
Miller DW, 1999, J MOL BIOL, V286, P267, DOI 10.1006/jmbi.1998.2445
Niessen KA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08926-3
Niessen KA, 2017, BIOPHYS J, V112, P933, DOI 10.1016/j.bpj.2016.12.049
Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289
Porter JR, 2019, BIOPHYS J, V116, P818, DOI 10.1016/j.bpj.2018.11.3144
Romo TD, 2014, J COMPUT CHEM, V35, P2305, DOI 10.1002/jcc.23753
Romo TD, 2009, IEEE ENG MED BIO, P2332, DOI 10.1109/IEMBS.2009.5335065
Sassi P, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4838355
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
Stehle CU, 2012, J CHEM PHYS, V136, DOI 10.1063/1.3686886
STRAUB JE, 1994, J PHYS CHEM-US, V98, P10978, DOI 10.1021/j100093a046
Tehver R, 2009, J MOL BIOL, V387, P390, DOI 10.1016/j.jmb.2008.12.032
Thirumuruganandham SP, 2009, J MOL MODEL, V15, P959, DOI 10.1007/s00894-008-0446-1
Whitmire SE, 2003, BIOPHYS J, V85, P1269, DOI 10.1016/S0006-3495(03)74562-7
Xie AH, 2000, PHYS REV LETT, V84, P5435, DOI 10.1103/PhysRevLett.84.5435
Xu D, 1996, J PHYS CHEM-US, V100, P12108, DOI 10.1021/jp960076a
Yu X, 2005, J CHEM PHYS, V122, DOI 10.1063/1.1830431
Yu X, 2004, CHEM PHYS LETT, V391, P181, DOI 10.1016/j.cplett.2004.04.100
Zakaria HA, 2011, APPL SPECTROSC, V65, P260, DOI 10.1366/10-06162
Zhang HL, 2009, J MOL GRAPH MODEL, V27, P655, DOI 10.1016/j.jmgm.2008.10.005
Zorba A, 2019, P NATL ACAD SCI USA, V116, P13937, DOI 10.1073/pnas.1906024116
Romo, Tod D. Grossfield, Alan Markelz, Andrea G.
Grossfield, Alan/0000-0002-5877-2789
National Science FoundationNational Science Foundation (NSF) [MCB 1616529]; U.S. Department of EnergyUnited States Department of Energy (DOE) [DESC0016317]
Funding was provided by the National Science Foundation (MCB 1616529) and the U.S. Department of Energy (DESC0016317).

1
Amer chemical soc
Washington
1549-960x}, month = {Dec}, pages = {6419-6426}, type = {Article}, abstract = {

Proteins are allosteric machines that couple motions at distinct, often distant, sites to control biological function. Low-frequency structural vibrations are a mechanism of this long-distance connection and are often used computationally to predict correlations, but experimentally identifying the vibrations associated with specific motions has proved challenging. Spectroscopy is an ideal tool to explore these excitations, but measurements have been largely unable to identify important frequency bands. The result is at odds with some previous calculations and raises the question what methods could successfully characterize protein structural vibrations. Here we show the lack of spectral structure arises in part from the variations in protein structure as the protein samples the energy landscape. However, by averaging over the energy landscape as sampled using an aggregate 18.5 mu s of all-atom molecular dynamics simulation of hen egg white lysozyme and normal-mode analyses, we find vibrations with large overlap with functional displacements are surprisingly concentrated in narrow frequency bands. These bands are not apparent in either the ensemble averaged vibrational density of states or isotropic absorption. However, in the case of the ensemble averaged anisotropic absorption, there is persistent spectral structure and overlap between this structure and the functional displacement frequency bands. We systematically lay out heuristics for calculating the spectra robustly, including the need for statistical sampling of the protein and inclusion of adequate water in the spectral calculation. The results show the congested spectrum of these complex molecules obscures important frequency bands associated with function and reveal a method to overcome this congestion by combining structurally sensitive spectroscopy with robust normal mode ensemble analysis.

}, keywords = {Chemistry, Computer Science, molecular-dynamics, Pharmacology \& Pharmacy, photoactive yellow protein, spectroscopy, state, vibrational-modes}, isbn = {1549-9596}, doi = {10.1021/acs.jcim.0c00879}, author = {Romo, T. D. and Grossfield, A. and Markelz, A. G.} } @conference {306, title = {Protein Intramolecular Motions with Deuteration and Inhibitor Binding Dependence}, booktitle = {APS R63.003}, year = {2019}, month = {03/2019}, url = {https://meetings.aps.org/Meeting/MAR19/Session/R63.3}, author = {Deng, Y. and McKinney, J. and Romo, T. and Grossfield, A. and Markelz, A. G.} } @article {249, title = {Spectral Assignment of Lysozyme Collective Vibrations}, journal = {Biophysical Journal}, volume = {116}, number = {3}, year = {2019}, note = {ISI Document Delivery No.: HO2XG
Times Cited: 0
Cited Reference Count: 1
Cited References:
Niessen KA, 2017, BIOPHYS J, V112, P933, DOI 10.1016/j.bpj.2016.12.049
Deng, Yanting Mckinney, Jeffrey Romo, Tod Grossfield, Alan Markelz, Andrea
63rd Annual Meeting of the Biophysical-Society
Mar 02-06, 2019
Baltimore, MD
Biophys Soc

8
Cell press
Cambridge
1542-0086
1}, month = {Feb}, pages = {564A-564A}, type = {Meeting Abstract}, abstract = {
Global structural vibrations at terahertz (THz) frequencies have been associated with protein function and allosteric control. A chief obstacle to utilizing this control mechanism has been measurement of specific motions. Recently it was shown that while the vibrational density of states, and isotropic absorption spectra are broad and featureless, collective vibrations can be isolated based on their directionality using aligned samples (realized with protein crystals) and anisotropic THz microscopy [1]. However the assignment of resonant bands to specific structural motions was complicated by the high symmetry of the tetragonal crystals used, and the slow experimental method. To structurally map the vibrations of the chicken egg white lysozyme (CEWL) we measure anisotropic absorption of triclinic crystals using our new technique: ideal polarization varying anisotropic THz microscopy (IPV-ATM). The low symmetry triclinic crystals provide absolute protein orientation, and the near field IPV-ATM rapidly measures broadband terahertz linear dichroism of the microcrystals. All measurements were performed at room temperature under 100\% humidity conditions. The unit cell parameters of triclinic lysozyme nitrate crystals, α = 28.5A{\textdegree}, b = 32.7A{\textdegree}, c = 35.1A{\textdegree}, α = 88.2{\textdegree}, β = 108.9{\textdegree}, γ = 111.9{\textdegree}, belonging to the P1 space group, were determined by X-ray diffraction before and after THz measurements. The intramolecular vibrational absorbance of the triclinic crystals has a more complex polarization dependence than the higher symmetry tetragonal crystals, as expected. While the tetragonal crystals have two strong bands at 45cm-1 and 55cm-1, the triclinic crystals have a series of narrow bands between 40 and 60cm-1 and a prominent band at 30cm-1. We compare the measured spectra to normal mode ensemble averaged calculations to assign the observed resonances, and isolating which collective motions impact the catalytic site.
}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2018.11.3032}, author = {Deng, Y. T. and McKinney, J. and Romo, T. and Grossfield, A. and Markelz, A.} } @article {247, title = {Increase in Dynamical Collectivity and Directionality of Orange Carotenoid Protein in the Photo-Protective State}, journal = {Biophysical Journal}, volume = {114}, number = {3}, year = {2018}, note = {ISI Document Delivery No.: GD5RB
Times Cited: 1
Cited Reference Count: 0
Deng, Yanting Luck, Catherine H. Romo, Tod D. Grossfield, Alan M. Bandara, Sepalika Ren, Zhong Yang, Xiaojing Markelz, Andrea G.
62nd Annual Meeting of the Biophysical-Society
Feb 17-21, 2018
San Francisco, CA
Biophys Soc
1

7
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {522A-522A}, type = {Meeting Abstract}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2854}, author = {Deng, Y. T. and Luck, C. H. and Romo, T. D. and Grossfield, A. M. and Bandara, S. and Ren, Z. and Yang, X. J. and Markelz, A. G.} } @article {224, title = {The 2017 terahertz science and technology roadmap}, journal = {Journal of Physics D-Applied Physics}, volume = {50}, number = {4}, year = {2017}, note = {ISI Document Delivery No.: EI0HL
Times Cited: 541
Cited Reference Count: 209
Cited References:
Adam AJL, 2011, J INFRARED MILLIM TE, V32, P976, DOI 10.1007/s10762-011-9809-2
Ahmed SS, 2012, IEEE MICROW MAG, V13, P26, DOI 10.1109/MMM.2012.2205772
Alliance N., 2015, CISC VIS NETW IND GL, P1
[Anonymous], 2013, 178512012 IEEE
[Anonymous], 2014, IEEE T ELECT DEVICES, V61
[Anonymous], 2012, 178522016 IEEE
[Anonymous], 2015, P17852 IEEE
Appleby R, 2015, P SOC PHOTO-OPT INS, V9462
Arnone DD, 1999, PROC SPIE, V3828, P209, DOI 10.1117/12.361037
Ashworth PC, 2009, OPT EXPRESS, V17, P12444, DOI 10.1364/OE.17.012444
AUSTON DH, 1988, IEEE J QUANTUM ELECT, V24, P184, DOI 10.1109/3.114
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
Barker RJ., 2005, MODERN MICROWAVE MIL
Basov DN, 2011, REV MOD PHYS, V83, P471, DOI 10.1103/RevModPhys.83.471
Bauwens M. F., 2014, P IEEEMTT S INT MICR, P1, DOI [10.1109/MWSYM.2014.68486 07, DOI 10.1109/MWSYM.2014.6848607]
Beard MC, 2002, NANO LETT, V2, P983, DOI 10.1021/nl0256210
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Bechtel HA, 2014, P NATL ACAD SCI USA, V111, P7191, DOI 10.1073/pnas.1400502111
Belkin MA, 2008, OPT EXPRESS, V16, P3242, DOI 10.1364/OE.16.003242
Belkin MA, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/11/118002
Bell R., 2012, INTRO FOURIER TRANSF
Berry CW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2638
Blanchard F, 2011, OPT EXPRESS, V19, P8277, DOI 10.1364/OE.19.008277
Blau J, 2013, P FREE EL LAS FEL 20, P486
Booske JH, 2011, IEEE T THZ SCI TECHN, V1, P54, DOI 10.1109/TTHZ.2011.2151610
Booske JH, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2838240
Boppel S, 2012, 2012 IEEE 12TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), P77, DOI 10.1109/SiRF.2012.6160142
Burghoff D, 2014, NAT PHOTONICS, V8, P462, DOI 10.1038/nphoton.2014.85
Busch SF, 2014, J INFRARED MILLIM TE, V35, P993, DOI 10.1007/s10762-014-0113-9
Byrne MB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3579258
Carr GL, 2002, NATURE, V420, P153, DOI 10.1038/nature01175
Carranza IE, 2015, IEEE T THZ SCI TECHN, V5, P892, DOI 10.1109/TTHZ.2015.2463673
Castro-Camus E, 2007, OPT EXPRESS, V15, P7047, DOI 10.1364/OE.15.007047
Chan WL, 2007, REP PROG PHYS, V70, P1325, DOI 10.1088/0034-4885/70/8/R02
Chattopadhyay G, 2011, IEEE T THZ SCI TECHN, V1, P33, DOI 10.1109/TTHZ.2011.2159561
Chen HT, 2003, APPL PHYS LETT, V83, P3009, DOI 10.1063/1.1616668
Chen JN, 2012, NATURE, V487, P77, DOI 10.1038/nature11254
Cocker T L, 2016, J PHYS D, V16, P1421
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
Coleman B, 2001, Issue Brief (Public Policy Inst (Am Assoc Retired Pers)), P1
Cooper KB, 2014, IEEE MICROW MAG, V15, P51, DOI 10.1109/MMM.2014.2356092
Cruz F C, 2007, C MICR OPT
Cunningham J, 2010, ELECTRON LETT, V46, pS34, DOI 10.1049/el.2010.3317
Dean P, 2011, OPT LETT, V36, P2587, DOI 10.1364/OL.36.002587
Dietz RJB, 2014, OPT LETT, V39, P6482, DOI 10.1364/OL.39.006482
Dietz RJB, 2014, OPT EXPRESS, V22, P19411, DOI 10.1364/OE.22.019411
Dobrovolsky V, 2007, SEMICOND SCI TECH, V22, P103, DOI 10.1088/0268-1242/22/2/017
Ducournau G, 2014, IEEE T THZ SCI TECHN, V4, P328, DOI 10.1109/TTHZ.2014.2309006
Dunsmore J.P., 2012, HDB MICROWAVE COMPON
Duvillaret L, 1999, APPL OPTICS, V38, P409, DOI 10.1364/AO.38.000409
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fathololoumi S, 2012, OPT EXPRESS, V20, P3866, DOI 10.1364/OE.20.003866
Fausti D, 2011, SCIENCE, V331, P189, DOI 10.1126/science.1197294
Federici J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3386413
Fei Z, 2012, NATURE, V487, P82, DOI 10.1038/nature11253
FETTERMAN HR, 1974, APPL PHYS LETT, V24, P70, DOI 10.1063/1.1655098
Freeman JR, 2013, OPT EXPRESS, V21, P16162, DOI 10.1364/OE.21.016162
Frisk U, 2003, ASTRON ASTROPHYS, V402, pL27, DOI 10.1051/0004-6361:20030335
Garet F, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890732
Gavrilov NG, 2007, NUCL INSTRUM METH A, V575, P54, DOI 10.1016/j.nima.2007.01.023
Gensch M., 2013, P 35 INT FREE EL LAS, P474
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giliberti V, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4819734
Grant J, 2013, LASER PHOTONICS REV, V7, P1043, DOI 10.1002/lpor.201300087
Green B, 2016, SCI REP-UK, V6, DOI 10.1038/srep22256
Griffith P.R., 2007, FOURIER TRANSFORM IN
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Gruene P, 2008, SCIENCE, V321, P674, DOI 10.1126/science.1161166
Han NR, 2014, OPT LETT, V39, P3480, DOI 10.1364/OL.39.003480
Han RN, 2013, IEEE J SOLID-ST CIRC, V48, P2296, DOI 10.1109/JSSC.2013.2269856
Hanham SM, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4927242
Hassel J, 2015, PROC SPIE, V9651, DOI 10.1117/12.2197522
Hauri CP, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3655331
He W, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4932099
Hebling J, 2002, OPT EXPRESS, V10, P1161, DOI 10.1364/OE.10.001161
Heinz E, 2015, J INFRARED MILLIM TE, V36, P879, DOI 10.1007/s10762-015-0170-8
Henry SC, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.9.091603
Hesler J L, 2006, P 7 INT S SPAC TER T, P215
Hintzsche H, 2012, CRIT REV ENV SCI TEC, V42, P2408, DOI 10.1080/10643389.2011.574206
Hishida M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.158102
Ho IC, 2010, OPT EXPRESS, V18, P2872, DOI 10.1364/OE.18.002872
HU BB, 1995, OPT LETT, V20, P1716, DOI 10.1364/OL.20.001716
Huang C, 2012, PHYS REV B, V85
Huber R, 2001, NATURE, V414, P286, DOI 10.1038/35104522
Jankowiak A., 2013, Synchrotron Radiation News, V26, P22, DOI 10.1080/08940886.2013.791212
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Jepsen PU, 2005, OPT LETT, V30, P29, DOI 10.1364/OL.30.000029
JUICE-Jupiter Icy Moons Explorer, 2014, SRE20141 JUICE EUR S, P1
Kallfass I, 2011, IEEE T THZ SCI TECHN, V1, P477, DOI 10.1109/TTHZ.2011.2160021
Kampfrath T, 2013, NAT PHOTONICS, V7, P680, DOI [10.1038/nphoton.2013.184, 10.1038/NPHOTON.2013.184]
Kan T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9422
Karpowicz N, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2828709
Kehr SC, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.256403
Kemp MC, 2011, IEEE T THZ SCI TECHN, V1, P282, DOI 10.1109/TTHZ.2011.2159647
Khalid A, 2014, J APPL PHYS, V115, DOI 10.1063/1.4868705
Kirley MP, 2015, IEEE T THZ SCI TECHN, V5, P1012, DOI 10.1109/TTHZ.2015.2468074
Kiwa T, 2003, OPT LETT, V28, P2058, DOI 10.1364/OL.28.002058
Koch M, 2001, NATO SCI SER II MATH, V27, P241
Koenig S, 2013, NAT PHOTONICS, V7, P977, DOI [10.1038/nphoton.2013.275, 10.1038/NPHOTON.2013.275]
Kohler R, 2002, NATURE, V417, P156, DOI 10.1038/417156a
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
Kosarev A, 2010, SOLID STATE ELECTRON, V54, P417, DOI 10.1016/j.sse.2009.12.032
Kundu I, 2014, OPT EXPRESS, V22, P16595, DOI 10.1364/OE.22.016595
Kuznetsov SA, 2010, KEY ENG MATER, V437, P276, DOI 10.4028/www.scientific.net/KEM.437.276
Langevin Y, 2005, PAYLOAD MISSION DEFI
LaRue JL, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.036103
Leitenstorfer A, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/045016
Leitner DM, 2006, INT REV PHYS CHEM, V25, P553, DOI 10.1080/01442350600862117
Li LH, 2014, ELECTRON LETT, V50, P309, DOI 10.1049/el.2013.4035
Liu L, 2010, IEEE MICROW WIREL CO, V20, P504, DOI 10.1109/LMWC.2010.2055553
Liu SC, 2016, OPT EXPRESS, V24, P2728, DOI 10.1364/OE.24.002728
Lu X H, 2008, P SOC PHOTO-OPT INS, V7277
Luukanen A, 2003, APPL PHYS LETT, V82, P3970, DOI 10.1063/1.1579562
Mann C, 2009, P SOC PHOTO-OPT INS, V7311, P3970
Mickan S, 2004, PROC SPIE, V5277, P54, DOI 10.1117/12.530386
Mineo M, 2010, IEEE T ELECTRON DEV, V57, P3169, DOI 10.1109/TED.2010.2071876
Mittleman DM, 1996, IEEE J SEL TOP QUANT, V2, P679, DOI 10.1109/2944.571768
Mittleman DM, 1999, APPL PHYS B-LASERS O, V68, P1085, DOI 10.1007/s003400050750
Moon K, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4733475
Muller AS, 2010, REV ACCEL SCI TECH, V3, P165, DOI 10.1142/S1793626810000427
Muller R, 2015, J INFRARED MILLIM TE, V36, P654, DOI 10.1007/s10762-015-0163-7
Naftaly M, 2015, TERAHERTZ METROLOGY, P1
Nagai M, 2015, OPT EXPRESS, V23, P4641, DOI 10.1364/OE.23.004641
Nagatsuma T, 2012, OPT EXPRESS, V21, P477
Nagel M, 2002, APPL PHYS LETT, V80, P154, DOI 10.1063/1.1428619
Navarro-Cia M, 2015, J INFRARED MILLIM TE, V36, P542, DOI 10.1007/s10762-015-0157-5
Nielsen K, 2009, OPT EXPRESS, V17, P8592, DOI 10.1364/OE.17.008592
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
Nordquist CD, 2011, IEEE J SEL TOP QUANT, V17, P130, DOI 10.1109/JSTQE.2010.2049095
Oh SJ, 2012, J INFRARED MILLIM TE, V33, P74, DOI 10.1007/s10762-011-9847-9
Ojefors E, 2009, IEEE J SOLID-ST CIRC, V44, P1968, DOI 10.1109/JSSC.2009.2021911
Ortolani M, 2008, PHYS REV LETT, V97
Ozerov M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.157205
Paoloni C, 2013, IEEE T ELECTRON DEV, V60, P1236, DOI 10.1109/TED.2013.2240686
Parrott EPJ, 2015, APPL SPECTROSC, V69, P1, DOI 10.1366/14-07707
Patrashin M, 2015, IEEE T ELECTRON DEV, V62, P1068, DOI 10.1109/TED.2015.2393358
Peiponen K. E., 2013, TERAHERTZ SPECTROSCO, V171
Peng K, 2015, NANO LETT, V15, P206, DOI 10.1021/nl5033843
Pickwell E, 2004, APPL PHYS LETT, V84, P2190, DOI 10.1063/1.1688448
Ponnampalam L, 2011, J LIGHTWAVE TECHNOL, V29, P2229, DOI 10.1109/JLT.2011.2158186
Pupeza I, 2007, OPT EXPRESS, V15, P4335, DOI 10.1364/OE.15.004335
Rauter P, 2015, LASER PHOTONICS REV, V9, P452, DOI 10.1002/lpor.201500095
Reid CB, 2011, PHYS MED BIOL, V56, P4333, DOI 10.1088/0031-9155/56/14/008
Reid J R, 2012, IEEE 12 TOP M SIL MO, P17
Rosch M, 2015, NAT PHOTONICS, V9, P42, DOI [10.1038/nphoton.2014.279, 10.1038/NPHOTON.2014.279]
Rudd JV, 2000, PROC SPIE, V3934, P27, DOI 10.1117/12.386344
Rymanov V, 2015, PHOTONICS, V2, DOI 10.3390/photonics2041152
SANTOS Daisy Conceicao, 2014, THESIS
Scherger B, 2011, APPL OPTICS, V50, P2256, DOI 10.1364/AO.50.002256
Schleicher JM, 2009, J APPL PHYS, V105, DOI 10.1063/1.3133093
Schumann S, 2012, OPT EXPRESS, V20, P19200, DOI 10.1364/OE.20.019200
Seeds AJ, 2015, J LIGHTWAVE TECHNOL, V33, P579, DOI 10.1109/JLT.2014.2355137
Sell A, 2008, OPT LETT, V33, P2767, DOI 10.1364/OL.33.002767
Shams H, 2015, IEEE PHOTONICS J, V7, DOI 10.1109/JPHOT.2015.2438437
Shams H, 2014, OPT EXPRESS, V22, P23465, DOI 10.1364/OE.22.023465
Shen YC, 2004, APPL PHYS LETT, V85, P164, DOI 10.1063/1.1768313
Simoens F., 2014, PHILOS T A, V372, P1
Simoens F, 2011, 36 INT C INFR MILL T, P1
Singh A, 2015, OPT EXPRESS, V23, P6656, DOI 10.1364/OE.23.006656
Sirtori C, 2013, NAT PHOTONICS, V7, P691, DOI [10.1038/NPHOTON.2013.208, 10.1038/nphoton.2013.208]
SMITH PR, 1988, IEEE J QUANTUM ELECT, V24, P255, DOI 10.1109/3.121
Son JH, 2013, NANOTECHNOLOGY, V24, DOI 10.1088/0957-4484/24/21/214001
Swinyard B, 2013, SPIE SENSORS SYSTEMS
Sy S, 2010, PHYS MED BIOL, V55, P7587, DOI 10.1088/0031-9155/55/24/013
Taylor ZD, 2015, IEEE T THZ SCI TECHN, V5, P184, DOI 10.1109/TTHZ.2015.2392628
Teppati V, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139567626
Tewari P, 2012, P SPIE, V8261
Thomas B., 2014, P 39 INT C INFR MILL, P1
Thumm M, 2014, KIT SCI REPORTS, V7693
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Truong BCQ, 2015, IEEE T BIO-MED ENG, V62, P699, DOI 10.1109/TBME.2014.2364025
Turcinkova D, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4916653
Turner GM, 2002, J PHYS CHEM B, V106, P11716, DOI 10.1021/jp025844e
van der Valk NCJ, 2002, APPL PHYS LETT, V81, P1558, DOI 10.1063/1.1503404
van Dijk F, 2014, IEEE PHOTONIC TECH L, V26, P965, DOI 10.1109/LPT.2014.2309353
Vicario C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.213901
Vinh NQ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4918708
Vitiello MS, 2012, NAT PHOTONICS, V6, P525, DOI 10.1038/nphoton.2012.145
Vitiello MS, 2015, OPT EXPRESS, V23, P5167, DOI 10.1364/OE.23.005167
Vitiello MS, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6884
Wade A, 2009, NAT PHOTONICS, V3, P41, DOI 10.1038/NPHOTON.2008.251
Wallace B., 2015, SPIE NEWSROOM, DOI [10.1117/2.1201503.005871, DOI 10.1117/2.1201503.005871]
Wallace VP, 2004, BRIT J DERMATOL, V151, P424, DOI 10.1111/j.1365-2133.2004.06129.x
Wang FH, 2015, OPTICA, V2, P944, DOI 10.1364/OPTICA.2.000944
Weightman P, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/053001
Wienold M, 2014, OPT EXPRESS, V22, P3334, DOI 10.1364/OE.22.003334
Wilk R, 2007, C LAS EL BALT MD
Williams BS, 2006, ELECTRON LETT, V42, P89, DOI 10.1049/el:20063921
Williams GP, 2006, REP PROG PHYS, V69, P301, DOI 10.1088/0034-4885/69/2/R01
Williams GP, 2008, NAT PHYS, V4, P356, DOI 10.1038/nphys958
Williams MRC, 2013, J PHYS CHEM B, V117, P10444, DOI 10.1021/jp406730a
Williams R, 2013, PHYS MED BIOL, V58, P373, DOI 10.1088/0031-9155/58/2/373
Withayachumnankul W, 2008, J OPT SOC AM B, V25, P1059, DOI 10.1364/JOSAB.25.001059
Woerner M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/025039
Woodward RM, 2003, J INVEST DERMATOL, V120, P72, DOI 10.1046/j.1523-1747.2003.12013.x
Wu X, OPT LETT, V39, P5403
Wu ZR, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790427
Xu J, 2003, PROC SPIE, V5268, P19, DOI 10.1117/12.518533
Yamashita M, 2011, OPT EXPRESS, V19, P10864, DOI 10.1364/OE.19.010864
Yan F, 2013, J INFRARED MILLIM TE, V34, P489, DOI 10.1007/s10762-013-0005-4
Yang SH, 2014, IEEE T THZ SCI TECHN, V4, P575, DOI 10.1109/TTHZ.2014.2342505
Yeh KL, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2734374
Zamora A, 2015, IEEE MTT S INT MICR
Zhao JF, 2011, IEEE T ELECTRON DEV, V58, P1221, DOI 10.1109/TED.2011.2109723
Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431]
Zhou Y, 2010, PROG ELECTROMAGN RES, V105, P71, DOI 10.2528/PIER10041806
Zibik EA, 2009, NAT MATER, V8, P803, DOI [10.1038/nmat2511, 10.1038/NMAT2511]
Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B.
Huggard, Peter/U-2150-2019; Konishi, Kuniaki/AAN-3624-2020; Zeitler, J. Axel/B-4885-2008; Paoloni, Claudio/AAH-9824-2019; Hoffmann, Matthias C./N-1082-2019; Wallace, Vincent P/A-9320-2012; Johnston, Michael/B-9813-2008; Castro-Camus, Enrique/V-6861-2019; Krozer, Viktor/P-5623-2014; Hoffmann, Matthias C/B-3893-2009; PAOLONI, CLAUDIO/AAA-3211-2020; Gonokami, Makoto/F-3641-2012; Shams, Haymen/H-3754-2012; Ridler, Nick/AAN-9637-2020; Huber, Rupert/N-4126-2018
Konishi, Kuniaki/0000-0003-2389-9787; Zeitler, J. Axel/0000-0002-4958-0582; Hoffmann, Matthias C./0000-0002-3596-9853; Wallace, Vincent P/0000-0003-3814-5400; Johnston, Michael/0000-0002-0301-8033; Krozer, Viktor/0000-0002-2387-1947; Hoffmann, Matthias C/0000-0002-3596-9853; PAOLONI, CLAUDIO/0000-0002-0265-0862; Shams, Haymen/0000-0002-5333-6478; Huber, Rupert/0000-0001-6617-9283; Davies, Alexander/0000-0002-1987-4846; Seeds, Alwyn/0000-0002-5228-627X; Castro-Camus, Enrique/0000-0002-8218-9155; Cunningham, John/0000-0002-1805-9743; Naftaly, Mira/0000-0002-0671-822X; Cumming, David/0000-0002-7838-8362
Engineering and Physical Sciences Research CouncilUK Research \& Innovation (UKRI)Engineering \& Physical Sciences Research Council (EPSRC) [EP/P015883/1, EP/M00306X/1, EP/K023349/1, EP/M017095/1, EP/L026597/1, EP/J017671/1] Funding Source: researchfish; Natural Environment Research CouncilUK Research \& Innovation (UKRI)NERC Natural Environment Research Council [NER/Z/S/2003/00642, NE/L012375/1, NER/Z/S/2000/01292] Funding Source: researchfish; Science and Technology Facilities CouncilUK Research \& Innovation (UKRI)Science \& Technology Facilities Council (STFC) [ST/P002056/1] Funding Source: researchfish; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Molecular and Cellular BioscienceNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1616529] Funding Source: National Science Foundation
566
30
462
Iop publishing ltd
Bristol
1361-6463}, month = {Feb}, pages = {49}, type = {Review}, abstract = {

Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to {\textquoteright}real world{\textquoteright} applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

}, keywords = {ex-vivo, generation, metal wave-guides, near-field, performance, photoconductive emitters, Physics, quantum-cascade lasers, radiation, semiconductors, Terahertz, thz, time-domain spectroscopy}, isbn = {0022-3727}, doi = {https://doi.org/10.1088/1361-6463/50/4/043001}, author = {Dhillon, S. S. and Vitiello, M. S. and Linfield, E. H. and Davies, A. G. and Hoffmann, M. C. and Booske, J. and Paoloni, C. and Gensch, M. and Weightman, P. and Williams, G. P. and Castro-Camus, E. and Cumming, D. R. S. and Simoens, F. and Escorcia-Carranza, I. and Grant, J. and Lucyszyn, S. and Kuwata-Gonokami, M. and Konishi, K. and Koch, M. and Schmuttenmaer, C. A. and Cocker, T. L. and Huber, R. and Markelz, A. G. and Taylor, Z. D. and Wallace, V. P. and Zeitler, J. A. and Sibik, J. and Korter, T. M. and Ellison, B. and Rea, S. and Goldsmith, P. and Cooper, K. B. and Appleby, R. and Pardo, D. and Huggard, P. G. and Krozer, V. and Shams, H. and Fice, M. and Renaud, C. and Seeds, A. and Stohr, A. and Naftaly, M. and Ridler, N. and Clarke, R. and Cunningham, J. E. and Johnston, M. B.} } @proceedings {232, title = {The role of the protein surface on the local biological water dynamics}, volume = {7397}, year = {2009}, note = {ISI Document Delivery No.: BVQ85
Times Cited: 0
Cited Reference Count: 12
Cited References:
Balu R, 2008, BIOPHYS J, V94, P3217, DOI 10.1529/biophysj.107.105163
Bergner A, 2005, REV SCI INSTRUM, V76, DOI 10.1063/1.1928427
Born B, 2009, J AM CHEM SOC, V131, P3752, DOI 10.1021/ja808997y
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
He YF, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.178103
Heugen U, 2006, P NATL ACAD SCI USA, V103, P12301, DOI 10.1073/pnas.0604897103
Jepsen PU, 2007, OPT EXPRESS, V15, P14717, DOI 10.1364/OE.15.014717
Kindt JT, 1996, J PHYS CHEM-US, V100, P10373, DOI 10.1021/jp960141g
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
THRANE L, 1995, CHEM PHYS LETT, V240, P330, DOI 10.1016/0009-2614(95)00543-D
Xu J, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2151267
Yada H, 2008, CHEM PHYS LETT, V464, P166, DOI 10.1016/j.cplett.2008.09.015
Liang, Wei He, Yunfen George, Deepu Markelz, A. G.
Proceedings Paper
Conference on Biosensing II
Aug 04-06, 2009
San Diego, CA
Spie
George, Deepu/J-9882-2014
George, Deepu/0000-0003-0021-0705; Markelz, Andrea/0000-0003-0443-4319
1000 20th st, po box 10, bellingham, wa 98227-0010 usa
0277-786x
73970t}, publisher = {Spie-Int Soc Optical Engineering}, address = {Bellingham}, abstract = {

Protein function is reliant on structural flexibility and this flexibility is slaved to the surrounding solvent. Here we discuss how the exposed surface of the protein influences the solvent dynamics and thereby influences the protein{\textquoteright}s own structural dynamics. We discuss measurements of the THz absorption of water in the presence of hydrophilic and hydrophobic surfaces.

}, keywords = {alanine, dynamics, hydration, lysine, lysozyme, proteins, relaxation, spectroscopy, Terahertz, thz}, isbn = {978-0-8194-7687-6}, doi = {https://doi.org/10.1117/12.828697}, author = {Liang, W. and He, Y. F. and George, D. and Markelz, A. G.}, editor = {Razeghi, M. and Mohseni, H.} } @article {243, title = {Terahertz response of quantum point contacts}, journal = {Applied Physics LettersApplied Physics LettersApplied Physics Letters}, volume = {92}, number = {22}, year = {2008}, note = {ISI Document Delivery No.: 310KL
Times Cited: 25
Cited Reference Count: 21
Cited References:
Aizin GR, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2800369
ARNONE DD, 1995, APPL PHYS LETT, V66, P3149, DOI 10.1063/1.113705
FENG SC, 1993, PHYS REV B, V48, P5354, DOI 10.1103/PhysRevB.48.5354
Hashiba H, 2004, APPL PHYS LETT, V85, P6036, DOI 10.1063/1.1834716
HU Q, 1993, APPL PHYS LETT, V62, P837, DOI 10.1063/1.108567
Hu Q, 1996, SEMICOND SCI TECH, V11, P1888, DOI 10.1088/0268-1242/11/12/021
JANSSEN TJBM, 1994, J PHYS-CONDENS MAT, V6, pL163, DOI 10.1088/0953-8984/6/13/002
Kabir NA, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2357605
KARADI C, 1994, J OPT SOC AM B, V11, P2566, DOI 10.1364/JOSAB.11.002566
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Lee M, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1851606
MITTLEMAN D, 2002, SPRINGER SERIES OPTI
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Ryzhii V, 2006, JPN J APPL PHYS 2, V45, pL1118, DOI 10.1143/JJAP.45.L1118
Shaner EA, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2735943
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
Teppe F, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2005394
VANHOUTEN H, 1992, SEMICONDUCT SEMIMET, P9
WYSS RA, 1993, APPL PHYS LETT, V63, P1522, DOI 10.1063/1.110736
WYSS RA, 1995, APPL PHYS LETT, V66, P1144, DOI 10.1063/1.113840
Song, J. W. Kabir, N. A. Kawano, Y. Ishibashi, K. Aizin, G. R. Mourokh, L. Reno, J. L. Markelz, A. G. Bird, J. P.
Ishibashi, Koji/G-7065-2012; Bird, Jonathan P/G-4068-2010
Ishibashi, Koji/0000-0001-8131-9969; Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
27

6
Amer inst physics
Melville
1077-3118}, month = {Jun}, pages = {3}, type = {Article}, abstract = {

We measure a clear terahertz response in the low-temperature conductance of a quantum point contact at 1.4 and 2.5 THz. We show that this photoresponse does not arise from a heating effect, but that it is instead excellently described by a classical model of terahertz-induced gate-voltage rectification. This effect is distinct from the rectification mechanisms that have been studied previously, being determined by the phase-dependent interference of the source drain and gate voltage modulations induced by the terahertz field. (C) 2008 American Institute of Physics.

}, keywords = {detector, devices, field-effect transistors, Physics, plasma-waves, radiation, resonant detection, subterahertz, transport}, isbn = {0003-6951}, doi = {https://doi.org/10.1063/1.2938416}, author = {Song, J. W. and Kabir, N. A. and Kawano, Y. and Ishibashi, K. and Aizin, G. R. and Mourokh, L. and Reno, J. L. and Markelz, A. G. and Bird, J. P.} } @article {229, title = {Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems}, journal = {Applied Physics Letters}, volume = {89}, number = {13}, year = {2006}, note = {ISI Document Delivery No.: 089JE
Times Cited: 18
Cited Reference Count: 16
Cited References:
ANDO T, 1982, REV MOD PHYS, V54, P437, DOI 10.1103/RevModPhys.54.437
ANDO T, 1989, HIGH MAGNETIC FIELDS, V2, P164
Ashcroft NW, 1976, SOLID STATE PHYS, P1
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Cerne J, 2000, PHYS REV B, V61, P8133, DOI 10.1103/PhysRevB.61.8133
COLERIDGE PT, 1991, PHYS REV B, V44, P3793, DOI 10.1103/PhysRevB.44.3793
Dorozhkin PS, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2035883
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Kukushkin IV, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1856143
MADELUNG O, 1996, SEMICONDUCTORS BASIC, P109
MCKNIGHT SW, 1987, INFRARED PHYS, V27, P327, DOI 10.1016/0020-0891(87)90074-1
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Sadofyev YG, 2002, APPL PHYS LETT, V81, P1833, DOI 10.1063/1.1504882
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
ZAWADZKI W, 1974, ADV PHYS, V23, P435, DOI 10.1080/00018737400101371
Kabir, N. A. Yoon, Y. Knab, J. R. Chen, J. -Y. Markelz, A. G. Reno, J. L. Sadofyev, Y. Johnson, S. Zhang, Y. -H. Bird, J. P.
Bird, Jonathan P/G-4068-2010
Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
18

15
Amer inst physics
Melville}, month = {Sep}, pages = {3}, type = {Article}, abstract = {

Frequency-dependent complex conductivity of high-mobility GaAs and InAs two-dimensional-electron-gas (2DEG) systems is studied by terahertz time domain spectroscopy. Determining the momentum relaxation time from a Drude model, the authors find a lower value than that from dc measurements, particularly at high frequencies/low temperatures. These deviations are consistent with the ratio tau(t)/tau(q,) where tau(q) is the full scattering time. This suggests that small-angle scattering leads to weaker heating of 2DEGs at low temperatures than expected from dc mobilit9y. (c) 2006 American Institute of Physics.

}, keywords = {field-effect transistors, photoconductivity, Physics, plasma-waves, radiation, resonant detection, subterahertz}, isbn = {0003-6951}, doi = {10.1063/1.2357605}, author = {Kabir, N. A. and Yoon, Y. and Knab, J. R. and Chen, J. Y. and Markelz, A. G. and Reno, J. L. and Sadofyev, Y. and Johnson, S. and Zhang, Y. H. and Bird, J. P.} } @article {294, title = {Direct measurements of optical phonons in SrTiO3 nanosystems}, journal = {Physica E: Low-dimensional Systems and Nanostructures}, volume = {19}, year = {2003}, month = {2003/07/01/}, pages = {236 - 239}, abstract = {

We use terahertz time domain spectroscopy to examine finite size effects on the optical phonon modes in SrTiO3 thin films. In temperature-dependent measurements we find a near absence of mode softening in the TO1 phonon frequency. Furthermore we see an increase in the soft mode frequency with reduced thickness. Both of these results correlate well with the reduced dielectric response observed for nanoscale ferroelectric systems.

}, keywords = {Ferroelectrics, Finite size, Mode softening, phonons, Strontium titanate, Terahertz}, isbn = {1386-9477}, doi = {10.1016/S1386-9477(03)00305-9}, url = {https://www.sciencedirect.com/science/article/pii/S1386947703003059}, author = {Wolpert, D and Korolev, K and Sachs, S and Knab, J and Cox, W and Cerne, J and Markelz, A.G and Zhao, T and Ramesh, R and Moeckly, B.H} } @proceedings {275, title = {Finite size effects in ferroelectric nanosystems: Absence of mode softening}, volume = {2}, year = {2003}, note = {cited By 0}, month = {02/2003}, pages = {76-81}, address = {San Francisco, CA}, abstract = {

We present measurements of the mode softening behavior for PbZr 0.5Ti0.5O3 (PZT(50)) thin films using terahertz time domain spectroscopy (TTDS). The films were grown using pulsed laser deposition (PLD) techniques on silicon substrates to study how reduced size affects the mode softening behavior. At room temperature two modes are observed at 1.1 THz (37 cm-1) and at 2.3 THz (77 cm-1). As the temperature is increased toward Tc we do not see strong mode softening, but rather a spectral weight transfer from the high frequency mode to the low frequency mode. This absence of mode softening is more dramatic than that reported by other investigators[1]. We will discuss the possible sources for this discrepancy. These results suggest a change in lattice dynamics for nanoscale ferroelectric films that may be highly dependent on the sample preparation technique.

}, keywords = {Ferroelectric materials, Fourier Transform Infrared Spectroscopy, Frequency ranges, Lead compounds, Mode softening, nanostructured materials, Natural frequencies, Optical modes, Permittivity, phase transitions, phonons, Routers, Thermal effects}, isbn = {0972842209}, author = {D. Wolpert and W. Cox and J. Cerne and A. Markelz and T. Zhao and R. Ramesh}, editor = {Romanowicz M.} } @article {271, title = {Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz}, journal = {Chemical Physics Letters}, volume = {320}, number = {1-2}, year = {2000}, note = {ISI Document Delivery No.: 299RG
Times Cited: 561
Cited Reference Count: 24
Cited References:
Cai Y, 1998, APPL PHYS LETT, V73, P444, DOI 10.1063/1.121894
CARTER DC, 1994, ADV PROTEIN CHEM, V45, P153
Chen EF, 1998, BIOCHEMISTRY-US, V37, P5589, DOI 10.1021/bi972369f
CHEVILLE RA, 1995, OPT LETT, V20, P1646, DOI 10.1364/OL.20.001646
FENG Y, 1991, PHYS REV A, V43, P1049, DOI 10.1103/PhysRevA.43.1049
Fraser R.D.B., 1973, CONFORMATION FIBROUS
Frushour B., 1975, ADV INFRARED RAMAN S, V1
GENZEL L, 1984, SPECTROSCOPY BIOL MO, P609
GRIEBENOW K, 1995, P NATL ACAD SCI USA, V92, P10969, DOI 10.1073/pnas.92.24.10969
HAYWARD S, 1995, ANNU REV PHYS CHEM, V46, P223, DOI 10.1146/annurev.pc.46.100195.001255
KATZENELLENBOGE.N, 1992, ULTRA WIDEBAND SHORT
Kindt JT, 1996, J PHYS CHEM-US, V100, P10373, DOI 10.1021/jp960141g
LINDSAY SM, 1988, BIOPOLYMERS, V27, P1015, DOI 10.1002/bip.360270610
Lisy V, 1997, J BIOMOL STRUCT DYN, V14, P517, DOI 10.1080/07391102.1997.10508150
Markelz AG, 1998, APPL PHYS LETT, V72, P2229, DOI 10.1063/1.121329
Nossal R. J., 1991, MOL CELL BIOPHYSICS
POWELL JW, 1987, PHYS REV A, V35, P3929, DOI 10.1103/PhysRevA.35.3929
POWELL JW, 1991, J MOL STRUCT, V247, P119
ROITBERG A, 1995, SCIENCE, V268, P1319, DOI 10.1126/science.7539156
WEIDLICH T, 1990, BIOPOLYMERS, V30, P477, DOI 10.1002/bip.360300324
WEIDLICH T, 1990, J BIOMOL STRUCT DYN, V8, P139, DOI 10.1080/07391102.1990.10507795
WITTLIN A, 1986, PHYS REV A, V34, P493, DOI 10.1103/PhysRevA.34.493
YOUNG L, 1990, PHYS REV A, V41, P7020, DOI 10.1103/PhysRevA.41.7020
ZHUANG W, 1990, PHYS REV A, V41, P7033, DOI 10.1103/PhysRevA.41.7033
Markelz, AG Roitberg, A Heilweil, EJ
Roitberg, Adrian/A-2378-2009
Markelz, Andrea/0000-0003-0443-4319
598
7
235
Elsevier science bv
Amsterdam}, month = {Mar}, pages = {42-48}, type = {Article}, abstract = {

We report the first use of pulsed terahertz spectroscopy to examine low-frequency collective vibrational modes of biomolecules. Broadband absorption increasing with frequency was observed for lyophilized powder samples of calf thymus DNA, bovine serum albumin and collagen in the 0.06-2.00 THz (2-67 cm(-1)) frequency range, suggesting that a large number of the low-frequency collective modes for these systems are IR active. Transmission measurements at room temperature showed increasing FIR absorption with hydration and denaturing. (C) 2000 published by Elsevier Science B.V. All rights reserved.

}, keywords = {b-dna, Chemistry, films, modes, Physics, proteins}, isbn = {0009-2614}, doi = {10.1016/S0009-2614(00)00227-X}, author = {Markelz, A. G. and Roitberg, A. and Heilweil, E. J.} } @proceedings {181, title = {Terahertz grid frequency doublers}, year = {1995}, publisher = {Citeseer}, url = {https://www.nrao.edu/meetings/isstt/papers/1995/1995199206.pdf}, author = {Chiao, Jung-Chih and Markelz, Andrea and Li, Yongjun and Hacker, Jonathan and Crowe, Thomas and Allen, James and Rutledge, David} } @article {257, title = {PROBING TERAHERTZ DYNAMICS IN SEMICONDUCTOR NANOSTRUCTURES WITH UCSB FREE-ELECTRON LASERS}, journal = {Journal of Luminescence}, volume = {60-1}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017; Guimaraes, Paulo Sergio Soares/B-6918-2012
Sherwin, Mark S/0000-0002-3869-1893; Guimaraes, Paulo Sergio Soares/0000-0002-0113-2641; Markelz, Andrea/0000-0003-0443-4319
1993 International Conference on Luminescence (ICL 93)
Aug 09-13, 1993
Univ connecticut, storrs, ct
Univ connecticut; opt soc amer; amer phys soc; ieee, laser \& electro opt soc; int union pure \& appl phys; int sci fdn; univ connecticut res fdn
3}, month = {Apr}, pages = {250-255}, abstract = {

The UCSB free-electron lasers provide kilowatts of continuously tunable radiation from 120 GHz to 4.8 THz. They have the most impact on terahertz science and technology that require a tunable, high power source to explore non-linear dynamics or that sacrifice incident power to recover the linear response of systems with very small cross-section. We describe three experiments that demonstrate the utility of these lasers in experiments on the terahertz dynamics of semiconductor nanostructures: (i) terahertz dynamics of resonant tunneling diodes, (ii) saturation spectroscopy of quantum wells and (iii) photon-assisted tunneling in superlattices.

}, isbn = {0022-2313}, doi = {10.1016/0022-2313(94)90142-2}, author = {Allen, S. J. and Craig, K. and Felix, C. L. and Guimaraes, P. and Heyman, J. N. and Kaminski, J. P. and Keay, B. J. and Markelz, A. G. and Ramian, G. and Scott, J. S. and Sherwin, M. S. and Campman, K. L. and Hopkins, P. F. and Gossard, A. C. and Chow, D. and Lui, M. and Liu, T. Y.} }