@article {329, title = {Near-Field Stationary Sample Terahertz Spectroscopic Polarimetry for Biomolecular Structural Dynamics Determination}, journal = {ACS Photonics}, volume = {8}, year = {2021}, month = {02/2021}, pages = {658-668}, chapter = {658}, abstract = {

THz polarimetry on environmentally sensitive and microscopic samples can provide unique insight into underlying mechanisms of complex phenomena. For example, near-field THz anisotropic absorption successfully isolated protein structural vibrations which are connected to biological function. However, to determine how these vibrations impact function requires high throughput measurements of these complex systems, which is challenged by the need for near field detection, sample environmental control and full polarization variation. Stationary sample anisotropic terahertz spectroscopy (SSATS) and near-field stationary sample anisotropic terahertz microscopy (SSATM) have been proposed using synchronous control of THz and electro optic probe polarizations along an iso-response curve. Here we realize these techniques through robust control and calibration of the THz and NIR polarization states. Both methods rapidly measure the linear dichroism in the far field and near field. Validation measurements using standard birefringent sucrose single crystals found the crystal orientation can be determined by scanning the reference polarization and the synchronous pump{\textendash}probe polarization settings can be optimized to eliminate artifacts. SSATM is then used to determine spectral reproducibility and dehydration effects for a series of chicken egg white lysozyme samples. Reproducible anisotropic absorbance bands are found at about 30, 44, 55, and 62 cm{\textendash}1. These bands initially sharpen with slow dehydration, similar to the increase in resolution achieved in X-ray crystallographic protein structure determination. The SSATM technique confirms the reliability of anisotropic absorption characterization of protein intramolecular vibrations and opens an avenue for rapid determination of how these long-range dynamics affect biological function.

}, doi = {10.1021/acsphotonics.0c01876}, url = {https://pubs.acs.org/doi/abs/10.1021/acsphotonics.0c01876}, author = {Deng, Y. and McKinney, J. A. and George, D. K. and Niessen, K. A. and Sharma, A. and Markelz, A.G.} } @article {520, title = {Phonon Kinetics of Fructose at the Melting Transition}, journal = {J. Phys. Chem. C}, volume = {125}, year = {2021}, pages = {12269-12276}, chapter = {12269}, abstract = {

Terahertz time domain spectroscopy (THz TDS) is used to measure the melting kinetics of fructose molecular crystals. Combining single-crystal anisotropy measurements with density functional calculations, we assign the phonon frequencies and interrogate how specific phonons behave with melting. While nearly all the low-frequency phonons continuously red-shift with heating and melting, the lowest-energy phonon polarized along the c-axis blue-shifts at the melting temperature, suggesting an initial structural change immediately before melting. We find that the kinetics follow a 3D growth model with large activation energies, consistent with previous differential scanning calorimetry (DSC) measurements. The large activation energies indicate that multiple H-bonds must break collectively for the transition. The results suggest the generality of the kinetics for molecular crystals and that THz TDS with picosecond resolution could be used to measure ultrafast kinetics.

}, doi = {10.1021/acs.jpcc.1c00610}, author = {A. Davie and F. Vandrevala and S. Dampf and Y. Deng and D. K. George and E. D. Sylvester and T. Korter and E. Einarsson and J. B. Benedict and A. G. Markelz} } @article {253, title = {Evidence of Intramolecular Structural Stabilization in Light Activated State of Orange Carotenoid Protein}, journal = {Biophysical Journal}, volume = {118}, number = {3}, year = {2020}, note = {ISI Document Delivery No.: KK8YX
Times Cited: 0
Cited Reference Count: 0
McKinney, Jeffrey A. Sharma, Akansha Crossen, Kimberly Deng, Yanting George, Deepu K. Lechno-Yossef, Sigal Kerfeld, Cheryl Markelz, Andrea G.
64th Annual Meeting of the Biophysical-Society
Feb 15-19, 2020
San Diego, CA
Biophys Soc
NSFNational Science Foundation (NSF) [DBI 1556359, MCB 1616529]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NIH STTRUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USA [R41 GM125486]
This work is supported by NSF grants DBI 1556359 and MCB 1616529, DOE grant DE-SC0016317 and NIH STTR R41 GM125486.

1
2
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {208A-208A}, type = {Meeting Abstract}, abstract = {

Orange carotenoid protein (OCP) controls efficiency of the light harvesting antenna, the phycobilisome (PBS), in diverse cyanobacteria and prevents oxidative damage. It is the only known photoactive protein that uses a carotenoid, canthaxanthin, as its chromophore. The structure of OCP consists of two globular domains, connected by an unstructured loop, that forms a hydrophobic pocket for the carotenoid. In low light, canthaxanthin bound OCP is inactive and appears orange. Illumination by strong light results in an active state that interacts with the PBS to induce fluorescence quenching, a red appearance and conformational changes that include a 12{\r A} shift by canthaxanthin into the N-terminal domain. Terahertz (THz) dynamical transition measurements and anisotropic terahertz microscopy are used to measure the intramolecular structural dynamics in the inactive and active states, which can be induced by photoexcitation or chaotropic salts. The measurements indicate that the active state has a decrease in structural flexibility, which may be related to enhanced interactions with the PBS.

}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.1245}, author = {McKinney, J. A. and Sharma, A. and Crossen, K. and Deng, Y. and George, D. K. and Lechno-Yossef, S. and Kerfeld, C. and Markelz, A. G.} } @article {238, title = {Linear dichroism infrared resonance in overdoped, underdoped, and optimally doped cuprate superconductors}, journal = {Physical Review B}, volume = {102}, number = {5}, year = {2020}, note = {ISI Document Delivery No.: NE5GO
Times Cited: 0
Cited Reference Count: 30
Cited References:
Acbas G, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.137201
Armitage NP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.035135
Arpaia R, 2018, PHY REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.024804
Basov DN, 2005, REV MOD PHYS, V77, P721, DOI 10.1103/RevModPhys.77.721
Blumberg G, 1996, PHYS REV B, V53, P11930, DOI 10.1103/PhysRevB.53.R11930
Cerne J, 2000, PHYS REV LETT, V84, P3418, DOI 10.1103/PhysRevLett.84.3418
Fauque B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.197001
Fridman I, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.104522
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Halperin B. I., 1991, SPRINGER P PHYS, V60, P439
Humlicek J, 2000, PHYS REV B, V61, P14554, DOI 10.1103/PhysRevB.61.14554
KOREN G, 1989, APPL PHYS LETT, V54, P1054, DOI 10.1063/1.101559
Koren G, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.174515
Lubashevsky Y, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.147001
Mukherjee A, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.085440
Nie LM, 2014, P NATL ACAD SCI USA, V111, P7980, DOI 10.1073/pnas.1406019111
Orenstein J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.067002
PISAREV RV, 1991, PHASE TRANSIT, V37, P63, DOI 10.1080/01411599108203448
Simon ME, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.247003
TROFIMOV IE, 1994, APPL PHYS LETT, V65, P2481, DOI 10.1063/1.112671
Varma CM, 2014, EPL-EUROPHYS LETT, V106, DOI 10.1209/0295-5075/106/27001
Varma CM, 1997, PHYS REV B, V55, P14554, DOI 10.1103/PhysRevB.55.14554
Wu J, 2017, NATURE, V547, P432, DOI 10.1038/nature23290
Xia J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.127002
Yakes MK, 2010, NANO LETT, V10, P1559, DOI 10.1021/nl9035302
Yakovenko VM, 2015, PHYSICA B, V460, P159, DOI 10.1016/j.physb.2014.11.060
Zhang H, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.033803
Zhang J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5235
Zhao L, 2017, NAT PHYS, V13, P250, DOI [10.1038/nphys3962, 10.1038/NPHYS3962]
Zhao L., 2018, ENCY MODERN OPTICS, P207
Mukherjee, A. Seo, J. Arik, M. M. Zhang, H. Zhang, C. C. Kirzhner, T. George, D. K. Markelz, A. G. Armitage, N. P. Koren, G. Wei, J. Y. T. Cerne, J.
NSF-DMR GrantNational Science Foundation (NSF) [1410599]; NSFNational Science Foundation (NSF) [MCB 1616529, DMR 1905519]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NSERCNatural Sciences and Engineering Research Council of Canada (NSERC); CFI-OITCanada Foundation for Innovation; Canadian Institute for Advanced ResearchCanadian Institute for Advanced Research (CIFAR)
We are indebted to D. Hsieh, S. A. Kivelson, C. M. Varma, and L. Zhao for helpful discussions. We gratefully acknowledge support from NSF-DMR Grant No. 1410599 (J.C.). A.G.M. and D.K.G. were supported by NSF Grant No. MCB 1616529 and DOE Grant No. DE-SC0016317. Work in Toronto was supported by NSERC, CFI-OIT, and the Canadian Institute for Advanced Research. J.Y.T.W. thanks Kejun Xu for laboratory assistance in Toronto. N.P.A. was supported by NSF Grant No. DMR 1905519.

9
Amer physical soc
College pk
2469-9969}, month = {Aug}, pages = {6}, type = {Article}, abstract = {

By measuring the polarization changes in terahertz, infrared, and visible radiation over an extended energy range (3-2330 meV), we observe symmetry breaking in cuprate high-temperature superconductors over wide energy, doping, and temperature ranges. We measure the polarization rotation (Re[theta(F)]) and ellipticity (Im[theta(F)]) of transmitted radiation through thin films as the sample is rotated. We observe a twofold rotational symmetry in theta(F), which is associated with linear dichroism (LD) and occurs when electromagnetic radiation polarized along one direction is absorbed more strongly than radiation polarized in the perpendicular direction. Such polarization anisotropies can be generally associated with symmetry breakings. We measure the amplitude of the LD signal and study its temperature, energy, and doping dependence. The LD signal shows a resonant behavior with a peak in the few hundred meV range, which is coincident with the midinfrared optical feature that has been associated with the formation of the pseudogap state. The strongest LD signal is found in underdoped films, although it is also observed in optimally and overdoped samples. The LD signal is consistent with an electronic nematic order which is decoupled from the crystallographic axes as well as novel magnetoelectric effects.

}, keywords = {Materials Science, Physics}, isbn = {2469-9950}, doi = {10.1103/PhysRevB.102.054520}, author = {Mukherjee, A. and Seo, J. and Arik, M. M. and Zhang, H. and Zhang, C. C. and Kirzhner, T. and George, D. K. and Markelz, A. G. and Armitage, N. P. and Koren, G. and Wei, J. Y. T. and Cerne, J.} } @article {282, title = {Is the Protein Dynamical Transition useful?}, journal = {Biophysical Journal}, volume = {118}, year = {2020}, chapter = {521a}, doi = {10.1016/j.bpj.2019.11.2866}, author = {Sharma, A. and George, D. K. and Crossen, K. and McKinney, J. and Kerfeld, C. and Markelz, A.} } @proceedings {544, title = {Stabilization of Terahertz Vibrational Modes in Illuminated Orange Carotenoid Protein Crystals}, year = {2020}, address = {Buffalo, NY}, abstract = {

Orange carotenoid protein (OCP) controls efficiency of the phycobilisome (PBS), the light harvesting antenna in cyanobacteria, to prevent oxidative damage. The OCP switches from resting state to photo protective state with intense blue light illumination. Questions persist as to why OCPR interaction increases with the PBS over that with the OCPO. Here we examine the role of long-range intramolecular vibrations within OCP. Using Stationary Sample Anisotropic Terahertz Microscopy (SSATM) we measure changes in the intramolecular vibrations with photo switching. We report the first observation of switching in the intramolecular vibrations with photoexcitation. Results suggest that there is a stiffening of the molecule in the photo protective state. This increase in structural stability may enhance the interaction with the PBS change in OCP interaction with PBS. In low light, carotenoid bound OCP appears orange (OCP o ) and is inactive. Illumination by strong light converts OCP to the active, red (OCPR) state, which interacts with the PBS. A comparison of anisotropic THz microscopy measurements of dark adapted (OCP o ) and illuminated OCP crystals indicate differences in their vibrational modes that may be important for OCP-PBS interactions.

}, doi = {10.1109/IRMMW-THz46771.2020.9370827}, author = {McKinney, J. and Sharma, A. and Deng, Y. and George, D. and Lechno-Yossef, S. and Kerfeld, C. and Markelz, A.} } @proceedings {235, title = {Anisotropic Terahertz Microscopy of Protein Collective Vibrations: Crystal Symmetry and Hydration Dependence}, year = {2019}, note = {ISI Document Delivery No.: BQ4OX
Times Cited: 0
Cited Reference Count: 4
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Legrand L, 2002, ACTA CRYSTALLOGR D, V58, P1564, DOI 10.1107/S0907444902014403
Niessen KA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08926-3
Niessen KA, 2017, BIOPHYS J, V112, P933, DOI 10.1016/j.bpj.2016.12.049
McKinney, Jeffrey Deng, Yanting Sharma, Akansha George, D. K. Markelz, A. G.
Irmmw-thz
Proceedings Paper
44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 01-06, 2019
Paris, FRANCE
Lytid, TYDEX, Swiss Terahertz, Fondat Maison Chimie, CNRS, Lab Physique ENS, Li2S, LUNA, MenloSystems, ENS, PSL Univ Paris, FYLA, ADVANTEST, Springer Nature, Soc Francaise Physique, Sorbonne Univ, Int Soc Infrared Millimeter \& Terahertz Waves, IEEE, GDR NANO THz MIR
NSFNational Science Foundation (NSF) [DBI 1556359, MCB 1616529]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NIHUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USA [STTR R41 GM125486]
This work is supported by NSF grants DBI 1556359 and MCB 1616529, DOE grant DE-SC0016317 and NIH STTR R41 GM125486.
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

A stationary sample anisotropic terahertz microscopy technique is used to characterize the intramolecular vibrations for lysozyme. Tetragonal and triclinic crystals are compared. We find excellent reproducibility within a single crystal symmetry group. Several resonant bands are present for both symmetry groups, indicating they originate with the intramolecular vibrations and not crystal lattice phonons. Bands become more pronounced and higher frequency resonant bands begin to emerge with slight dehydration.

}, isbn = {978-1-5386-8285-2}, doi = {https://doi.org/10.1109/IRMMW-THz.2019.8873722}, author = {McKinney, J. and Deng, Y. T. and Sharma, A. and George, D. K. and Markelz, A. G.} } @article {276, title = {Blue Shift of a Molecular Crystal Phonon at the Solid to Liquid Phase Transition}, journal = {Bulletin of the American Physical Society}, volume = {2019}, year = {2019}, author = {Davie, Alex and Vandrevala, Farah and Deng, Yanting and George, D. and Sylvester, Eric D. and Korter, T. and Einarsson, E. and Benedict, Jason B. and Markelz, Andrea} } @article {199, title = {Protein and RNA dynamical fingerprinting}, journal = {Nature communications}, volume = {10}, number = {1}, year = {2019}, pages = {1-10}, isbn = {2041-1723}, doi = {https://doi.org/10.1038/s41467-019-08926-3}, author = {Niessen, Katherine A and Xu, Mengyang and George, Deepu K and Chen, Michael C and Ferr{\'e}-D{\textquoteright}Amar{\'e}, Adrian R and Snell, Edward H and Cody, Vivian and Pace, James and Schmidt, Marius and Markelz, Andrea G} } @proceedings {230, title = {Stationary Sample Anisotropic THz Spectroscopy using Discretely Tunable THz Sources}, year = {2019}, note = {Irmmw-thz
44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 01-06, 2019
Paris, FRANCE
Lytid; TYDEX; Swiss Terahertz; Fondat Maison Chimie; CNRS, Lab Physique ENS; Li2S; LUNA; MenloSystems; ENS; PSL Univ Paris; FYLA; ADVANTEST; Springer Nature; Soc Francaise Physique; Sorbonne Univ; Int Soc Infrared Millimeter \& Terahertz Waves; IEEE; GDR NANO THz MIR
2162-2027}, abstract = {

We demonstrate anisotropic THz spectroscopy of sucrose using newly developed compact discretely tunable THz sources for turn-key spectroscopic systems.

}, isbn = {978-1-5386-8285-2}, doi = {https://doi.org/10.1109/IRMMW-THz.2019.8874234}, author = {LaFave, T., Jr. and George, D. K. and Markelz, A. G. and McNee, Ian and Kozlov, Vladimir and Schunemann, Peter} } @proceedings {185, title = {Tunable Compact Narrow Band THz Sources for Frequency Domain THz Anisotropic Spectroscopy}, volume = {10983}, year = {2019}, note = {ISI Document Delivery No.: BN5PJ
Times Cited: 0
Cited Reference Count: 17
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Lee Y. S., 2006, APPL PHYS LETT, V89
Lee YS, 2000, APPL PHYS LETT, V76, P2505, DOI 10.1063/1.126390
Lin A., 2013, ANTIPHASE DOMAIN ANN
Niessen K. A., BIOPHYSICAL J, V112, P933
Niessen KA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08926-3
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
PARSONS DF, 1971, APPL OPTICS, V10, P1683
Singh R., 2013, PHYSICS
Strachan CJ, 2005, J PHARM SCI-US, V94, P837, DOI 10.1002/jps.20281
Tassev V., 2013, SPIE LASE, V9
Tekavec P., 2017, FRONTIERS OPTICS 201
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
Zeitler JA, 2009, EUR J PHARM BIOPHARM, V71, P2, DOI 10.1016/j.ejpb.2008.08.012
George, D. K. LaFave, T. J. Markelz, A. G. Mcnee, Ian Tekavec, Patrick Kozlov, Vladimir Schunemann, Peter
LaFave, Tim/0000-0003-2925-8657
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [R41GM125486] Funding Source: NIH RePORTER; NIGMS NIH HHSUnited States Department of Health \& Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [R41 GM125486] Funding Source: Medline
0277-786x
1098311}, month = {Apr 15-17}, publisher = {Spie-Int Soc Optical Engineering}, address = {Baltimore, MD}, abstract = {

We demonstrate frequency domain THz anisotropy signature detection for protein crystal models using newly developed compact tunable narrow band THz sources based on Orientation Patterned Gallium Phosphide for turn-key spectroscopic systems.

}, keywords = {anisotropy, biomolecules, femtosecond, optical rectification, orientation patterned gallium phosphide, Terahertz, THz generation}, isbn = {978-1-5106-2632-4}, doi = {https://doi.org/10.1117/12.2519878}, author = {George, D. K. and LaFave, T. J. and Markelz, A. G. and McNee, I. and Tekavec, P. and Kozlov, V. and Schunemann, P.} } @conference {305, title = {Tunable narrow band sources for anisotropic THz spectroscopy}, booktitle = {APS S23-002}, year = {2019}, month = {02/2019}, url = {https://meetings.aps.org/Meeting/MAR19/Session/S23.2}, author = {George, D. K. and McNee, I. and Tekavec, P. and Kozlov, V. and Schunemann, P. and Markelz, A. G.} } @proceedings {236, title = {Tunable narrowband THz generation in orientation patterned gallium phosphide for THz anisotropy identification}, volume = {10902}, year = {2019}, note = {ISI Document Delivery No.: BM9XB
Times Cited: 2
Cited Reference Count: 8
Cited References:
Fejer M. M., 2013, ANTIPHASE DOMAIN ANN, P258
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Lee YS, 2000, APPL PHYS LETT, V76, P2505, DOI 10.1063/1.126390
Niessen K. A., BIOPHYSICAL J, V112, P933
PARSONS DF, 1971, APPL OPTICS, V10, P1683
Singh R., 2013, MODULATED ORIENTATIO
Tassev V., 2013, SPIE LASE, P9
Tekavec P., 2017, FRONTIERS OPTICS 201
McNee, Ian Tekavec, Patrick Kozlov, Vladimir Markelz, A. G. George, D. K. Schunemann, Peter
Proceedings Paper
Conference on Nonlinear Frequency Generation and Conversion - Materials and Devices XVIII
Feb 05-07, 2019
San Francisco, CA
Spie
1000 20th st, po box 10, bellingham, wa 98227-0010 usa
0277-786x
Unsp 1090218}, publisher = {Spie-Int Soc Optical Engineering}, address = {Bellingham}, abstract = {

We demonstrate tunable narrowband THz generation by optical rectification of a femtosecond pulse in Orientation Patterned Gallium Phosphide. Center frequencies of 0.9 - 3.8 THz with average power up to 15 mu W were achieved using a 1.064 mu m fiber laser for the pump laser. Biomolecular characterization for an early application of this system is also shown in this work by anisotropic spectroscopic signature detection of molecular crystals in the THz region.

}, keywords = {anisotropy, biomolecules, femtosecond, optical rectification, orientation patterned gallium phosphide, Terahertz, THz generation}, isbn = {978-1-5106-2447-4}, doi = {https://doi.org/10.1117/12.2510522}, author = {McNee, I. and Tekavec, P. and Kozlov, V. and Markelz, A. G. and George, D. K. and Schunemann, P.}, editor = {Schunemann, P. G. and Schepler, K. L.} } @conference {284, title = {Measuring Protein Intramolecular Dynamics with Terahertz Light: Functional Changes and Relevance to Biology}, booktitle = {APS 2018}, volume = {H50.001}, year = {2018}, url = {http://meetings.aps.org/link/BAPS.2018.MAR.H50.1}, author = {Xu, M. and Deng, Y. and Luck, C. and Sharma, A. and Markelz, A.} } @proceedings {226, title = {THz Anisotropy Identification using Tunable Compact Narrow Band THz Sources}, year = {2018}, note = {ISI Document Delivery No.: BL3GO
Times Cited: 0
Cited Reference Count: 6
Cited References:
Dhillon SS, 2017, J PHYS D APPL PHYS, V50, DOI 10.1088/1361-6463/50/4/043001
Lee YS, 2000, APPL PHYS LETT, V76, P2505, DOI 10.1063/1.126390
Lin A., 2013, ANTIPHASE DOMAIN ANN, P258
Niessen KA, 2017, BIOPHYS J, V112, P933, DOI 10.1016/j.bpj.2016.12.049
Tassev V., 2013, SPIE LASE, P9
Tekavec P., 2017, FRONTIERS OPTICS 201
George, D. K. Markelz, A. G. Mcnee, Ian Tekavec, Patrick Kozlov, Vladimir Schunemann, Peter
Irmmw-thz
Proceedings Paper
43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 09-14, 2018
Nagoya, JAPAN
IEEE Microwave Theory \& Tech Soc, TeraTech, JSPS, JSIR, Japan Soc Appl Phys, IEEJ, CSJ, AIP, APL Photon, AIP, Journal Appl Phys, EiC, SPSJ, Terahertz Syst Consortium, AICHI, Nagoya Convent \& Visitors Bur, ADVANTEST CORP, AmTechs Corp, Menlo Systems GmbH, Nippo Precigion Co Ltd, TeraMetrix LLC Div Luna, ATN Japan LTD, DAHENG NEW EPOCH TECHNOL INC, FEMTO Dev Inc, KYOWA FINTECH Co Ltd, Spectra Design Ltd, TeraView Ltd, TYDEX LLC, Virginia Diodes Inc, PNP, Tydex Res \& Ind Opt, Femtowave, Kyowa Fine Tech Co Ltd, Daheng Opt
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

We demonstrate THz anisotropy signature determination of a protein crystal model using newly developed compact tunable narrow band THz sources for turn-key spectroscopic systems for the bio molecular community.

}, isbn = {978-1-5386-3809-5}, doi = {https://doi.org/10.1109/IRMMW-THz.2018.8510291}, author = {George, D. K. and Markelz, A. G. and McNee, I. and Tekavec, P. and Kozlov, V. and Schunemann, P.} } @article {224, title = {The 2017 terahertz science and technology roadmap}, journal = {Journal of Physics D-Applied Physics}, volume = {50}, number = {4}, year = {2017}, note = {ISI Document Delivery No.: EI0HL
Times Cited: 541
Cited Reference Count: 209
Cited References:
Adam AJL, 2011, J INFRARED MILLIM TE, V32, P976, DOI 10.1007/s10762-011-9809-2
Ahmed SS, 2012, IEEE MICROW MAG, V13, P26, DOI 10.1109/MMM.2012.2205772
Alliance N., 2015, CISC VIS NETW IND GL, P1
[Anonymous], 2013, 178512012 IEEE
[Anonymous], 2014, IEEE T ELECT DEVICES, V61
[Anonymous], 2012, 178522016 IEEE
[Anonymous], 2015, P17852 IEEE
Appleby R, 2015, P SOC PHOTO-OPT INS, V9462
Arnone DD, 1999, PROC SPIE, V3828, P209, DOI 10.1117/12.361037
Ashworth PC, 2009, OPT EXPRESS, V17, P12444, DOI 10.1364/OE.17.012444
AUSTON DH, 1988, IEEE J QUANTUM ELECT, V24, P184, DOI 10.1109/3.114
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
Barker RJ., 2005, MODERN MICROWAVE MIL
Basov DN, 2011, REV MOD PHYS, V83, P471, DOI 10.1103/RevModPhys.83.471
Bauwens M. F., 2014, P IEEEMTT S INT MICR, P1, DOI [10.1109/MWSYM.2014.68486 07, DOI 10.1109/MWSYM.2014.6848607]
Beard MC, 2002, NANO LETT, V2, P983, DOI 10.1021/nl0256210
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Bechtel HA, 2014, P NATL ACAD SCI USA, V111, P7191, DOI 10.1073/pnas.1400502111
Belkin MA, 2008, OPT EXPRESS, V16, P3242, DOI 10.1364/OE.16.003242
Belkin MA, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/11/118002
Bell R., 2012, INTRO FOURIER TRANSF
Berry CW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2638
Blanchard F, 2011, OPT EXPRESS, V19, P8277, DOI 10.1364/OE.19.008277
Blau J, 2013, P FREE EL LAS FEL 20, P486
Booske JH, 2011, IEEE T THZ SCI TECHN, V1, P54, DOI 10.1109/TTHZ.2011.2151610
Booske JH, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2838240
Boppel S, 2012, 2012 IEEE 12TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), P77, DOI 10.1109/SiRF.2012.6160142
Burghoff D, 2014, NAT PHOTONICS, V8, P462, DOI 10.1038/nphoton.2014.85
Busch SF, 2014, J INFRARED MILLIM TE, V35, P993, DOI 10.1007/s10762-014-0113-9
Byrne MB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3579258
Carr GL, 2002, NATURE, V420, P153, DOI 10.1038/nature01175
Carranza IE, 2015, IEEE T THZ SCI TECHN, V5, P892, DOI 10.1109/TTHZ.2015.2463673
Castro-Camus E, 2007, OPT EXPRESS, V15, P7047, DOI 10.1364/OE.15.007047
Chan WL, 2007, REP PROG PHYS, V70, P1325, DOI 10.1088/0034-4885/70/8/R02
Chattopadhyay G, 2011, IEEE T THZ SCI TECHN, V1, P33, DOI 10.1109/TTHZ.2011.2159561
Chen HT, 2003, APPL PHYS LETT, V83, P3009, DOI 10.1063/1.1616668
Chen JN, 2012, NATURE, V487, P77, DOI 10.1038/nature11254
Cocker T L, 2016, J PHYS D, V16, P1421
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
Coleman B, 2001, Issue Brief (Public Policy Inst (Am Assoc Retired Pers)), P1
Cooper KB, 2014, IEEE MICROW MAG, V15, P51, DOI 10.1109/MMM.2014.2356092
Cruz F C, 2007, C MICR OPT
Cunningham J, 2010, ELECTRON LETT, V46, pS34, DOI 10.1049/el.2010.3317
Dean P, 2011, OPT LETT, V36, P2587, DOI 10.1364/OL.36.002587
Dietz RJB, 2014, OPT LETT, V39, P6482, DOI 10.1364/OL.39.006482
Dietz RJB, 2014, OPT EXPRESS, V22, P19411, DOI 10.1364/OE.22.019411
Dobrovolsky V, 2007, SEMICOND SCI TECH, V22, P103, DOI 10.1088/0268-1242/22/2/017
Ducournau G, 2014, IEEE T THZ SCI TECHN, V4, P328, DOI 10.1109/TTHZ.2014.2309006
Dunsmore J.P., 2012, HDB MICROWAVE COMPON
Duvillaret L, 1999, APPL OPTICS, V38, P409, DOI 10.1364/AO.38.000409
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fathololoumi S, 2012, OPT EXPRESS, V20, P3866, DOI 10.1364/OE.20.003866
Fausti D, 2011, SCIENCE, V331, P189, DOI 10.1126/science.1197294
Federici J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3386413
Fei Z, 2012, NATURE, V487, P82, DOI 10.1038/nature11253
FETTERMAN HR, 1974, APPL PHYS LETT, V24, P70, DOI 10.1063/1.1655098
Freeman JR, 2013, OPT EXPRESS, V21, P16162, DOI 10.1364/OE.21.016162
Frisk U, 2003, ASTRON ASTROPHYS, V402, pL27, DOI 10.1051/0004-6361:20030335
Garet F, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890732
Gavrilov NG, 2007, NUCL INSTRUM METH A, V575, P54, DOI 10.1016/j.nima.2007.01.023
Gensch M., 2013, P 35 INT FREE EL LAS, P474
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giliberti V, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4819734
Grant J, 2013, LASER PHOTONICS REV, V7, P1043, DOI 10.1002/lpor.201300087
Green B, 2016, SCI REP-UK, V6, DOI 10.1038/srep22256
Griffith P.R., 2007, FOURIER TRANSFORM IN
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Gruene P, 2008, SCIENCE, V321, P674, DOI 10.1126/science.1161166
Han NR, 2014, OPT LETT, V39, P3480, DOI 10.1364/OL.39.003480
Han RN, 2013, IEEE J SOLID-ST CIRC, V48, P2296, DOI 10.1109/JSSC.2013.2269856
Hanham SM, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4927242
Hassel J, 2015, PROC SPIE, V9651, DOI 10.1117/12.2197522
Hauri CP, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3655331
He W, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4932099
Hebling J, 2002, OPT EXPRESS, V10, P1161, DOI 10.1364/OE.10.001161
Heinz E, 2015, J INFRARED MILLIM TE, V36, P879, DOI 10.1007/s10762-015-0170-8
Henry SC, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.9.091603
Hesler J L, 2006, P 7 INT S SPAC TER T, P215
Hintzsche H, 2012, CRIT REV ENV SCI TEC, V42, P2408, DOI 10.1080/10643389.2011.574206
Hishida M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.158102
Ho IC, 2010, OPT EXPRESS, V18, P2872, DOI 10.1364/OE.18.002872
HU BB, 1995, OPT LETT, V20, P1716, DOI 10.1364/OL.20.001716
Huang C, 2012, PHYS REV B, V85
Huber R, 2001, NATURE, V414, P286, DOI 10.1038/35104522
Jankowiak A., 2013, Synchrotron Radiation News, V26, P22, DOI 10.1080/08940886.2013.791212
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Jepsen PU, 2005, OPT LETT, V30, P29, DOI 10.1364/OL.30.000029
JUICE-Jupiter Icy Moons Explorer, 2014, SRE20141 JUICE EUR S, P1
Kallfass I, 2011, IEEE T THZ SCI TECHN, V1, P477, DOI 10.1109/TTHZ.2011.2160021
Kampfrath T, 2013, NAT PHOTONICS, V7, P680, DOI [10.1038/nphoton.2013.184, 10.1038/NPHOTON.2013.184]
Kan T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9422
Karpowicz N, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2828709
Kehr SC, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.256403
Kemp MC, 2011, IEEE T THZ SCI TECHN, V1, P282, DOI 10.1109/TTHZ.2011.2159647
Khalid A, 2014, J APPL PHYS, V115, DOI 10.1063/1.4868705
Kirley MP, 2015, IEEE T THZ SCI TECHN, V5, P1012, DOI 10.1109/TTHZ.2015.2468074
Kiwa T, 2003, OPT LETT, V28, P2058, DOI 10.1364/OL.28.002058
Koch M, 2001, NATO SCI SER II MATH, V27, P241
Koenig S, 2013, NAT PHOTONICS, V7, P977, DOI [10.1038/nphoton.2013.275, 10.1038/NPHOTON.2013.275]
Kohler R, 2002, NATURE, V417, P156, DOI 10.1038/417156a
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
Kosarev A, 2010, SOLID STATE ELECTRON, V54, P417, DOI 10.1016/j.sse.2009.12.032
Kundu I, 2014, OPT EXPRESS, V22, P16595, DOI 10.1364/OE.22.016595
Kuznetsov SA, 2010, KEY ENG MATER, V437, P276, DOI 10.4028/www.scientific.net/KEM.437.276
Langevin Y, 2005, PAYLOAD MISSION DEFI
LaRue JL, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.036103
Leitenstorfer A, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/045016
Leitner DM, 2006, INT REV PHYS CHEM, V25, P553, DOI 10.1080/01442350600862117
Li LH, 2014, ELECTRON LETT, V50, P309, DOI 10.1049/el.2013.4035
Liu L, 2010, IEEE MICROW WIREL CO, V20, P504, DOI 10.1109/LMWC.2010.2055553
Liu SC, 2016, OPT EXPRESS, V24, P2728, DOI 10.1364/OE.24.002728
Lu X H, 2008, P SOC PHOTO-OPT INS, V7277
Luukanen A, 2003, APPL PHYS LETT, V82, P3970, DOI 10.1063/1.1579562
Mann C, 2009, P SOC PHOTO-OPT INS, V7311, P3970
Mickan S, 2004, PROC SPIE, V5277, P54, DOI 10.1117/12.530386
Mineo M, 2010, IEEE T ELECTRON DEV, V57, P3169, DOI 10.1109/TED.2010.2071876
Mittleman DM, 1996, IEEE J SEL TOP QUANT, V2, P679, DOI 10.1109/2944.571768
Mittleman DM, 1999, APPL PHYS B-LASERS O, V68, P1085, DOI 10.1007/s003400050750
Moon K, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4733475
Muller AS, 2010, REV ACCEL SCI TECH, V3, P165, DOI 10.1142/S1793626810000427
Muller R, 2015, J INFRARED MILLIM TE, V36, P654, DOI 10.1007/s10762-015-0163-7
Naftaly M, 2015, TERAHERTZ METROLOGY, P1
Nagai M, 2015, OPT EXPRESS, V23, P4641, DOI 10.1364/OE.23.004641
Nagatsuma T, 2012, OPT EXPRESS, V21, P477
Nagel M, 2002, APPL PHYS LETT, V80, P154, DOI 10.1063/1.1428619
Navarro-Cia M, 2015, J INFRARED MILLIM TE, V36, P542, DOI 10.1007/s10762-015-0157-5
Nielsen K, 2009, OPT EXPRESS, V17, P8592, DOI 10.1364/OE.17.008592
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
Nordquist CD, 2011, IEEE J SEL TOP QUANT, V17, P130, DOI 10.1109/JSTQE.2010.2049095
Oh SJ, 2012, J INFRARED MILLIM TE, V33, P74, DOI 10.1007/s10762-011-9847-9
Ojefors E, 2009, IEEE J SOLID-ST CIRC, V44, P1968, DOI 10.1109/JSSC.2009.2021911
Ortolani M, 2008, PHYS REV LETT, V97
Ozerov M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.157205
Paoloni C, 2013, IEEE T ELECTRON DEV, V60, P1236, DOI 10.1109/TED.2013.2240686
Parrott EPJ, 2015, APPL SPECTROSC, V69, P1, DOI 10.1366/14-07707
Patrashin M, 2015, IEEE T ELECTRON DEV, V62, P1068, DOI 10.1109/TED.2015.2393358
Peiponen K. E., 2013, TERAHERTZ SPECTROSCO, V171
Peng K, 2015, NANO LETT, V15, P206, DOI 10.1021/nl5033843
Pickwell E, 2004, APPL PHYS LETT, V84, P2190, DOI 10.1063/1.1688448
Ponnampalam L, 2011, J LIGHTWAVE TECHNOL, V29, P2229, DOI 10.1109/JLT.2011.2158186
Pupeza I, 2007, OPT EXPRESS, V15, P4335, DOI 10.1364/OE.15.004335
Rauter P, 2015, LASER PHOTONICS REV, V9, P452, DOI 10.1002/lpor.201500095
Reid CB, 2011, PHYS MED BIOL, V56, P4333, DOI 10.1088/0031-9155/56/14/008
Reid J R, 2012, IEEE 12 TOP M SIL MO, P17
Rosch M, 2015, NAT PHOTONICS, V9, P42, DOI [10.1038/nphoton.2014.279, 10.1038/NPHOTON.2014.279]
Rudd JV, 2000, PROC SPIE, V3934, P27, DOI 10.1117/12.386344
Rymanov V, 2015, PHOTONICS, V2, DOI 10.3390/photonics2041152
SANTOS Daisy Conceicao, 2014, THESIS
Scherger B, 2011, APPL OPTICS, V50, P2256, DOI 10.1364/AO.50.002256
Schleicher JM, 2009, J APPL PHYS, V105, DOI 10.1063/1.3133093
Schumann S, 2012, OPT EXPRESS, V20, P19200, DOI 10.1364/OE.20.019200
Seeds AJ, 2015, J LIGHTWAVE TECHNOL, V33, P579, DOI 10.1109/JLT.2014.2355137
Sell A, 2008, OPT LETT, V33, P2767, DOI 10.1364/OL.33.002767
Shams H, 2015, IEEE PHOTONICS J, V7, DOI 10.1109/JPHOT.2015.2438437
Shams H, 2014, OPT EXPRESS, V22, P23465, DOI 10.1364/OE.22.023465
Shen YC, 2004, APPL PHYS LETT, V85, P164, DOI 10.1063/1.1768313
Simoens F., 2014, PHILOS T A, V372, P1
Simoens F, 2011, 36 INT C INFR MILL T, P1
Singh A, 2015, OPT EXPRESS, V23, P6656, DOI 10.1364/OE.23.006656
Sirtori C, 2013, NAT PHOTONICS, V7, P691, DOI [10.1038/NPHOTON.2013.208, 10.1038/nphoton.2013.208]
SMITH PR, 1988, IEEE J QUANTUM ELECT, V24, P255, DOI 10.1109/3.121
Son JH, 2013, NANOTECHNOLOGY, V24, DOI 10.1088/0957-4484/24/21/214001
Swinyard B, 2013, SPIE SENSORS SYSTEMS
Sy S, 2010, PHYS MED BIOL, V55, P7587, DOI 10.1088/0031-9155/55/24/013
Taylor ZD, 2015, IEEE T THZ SCI TECHN, V5, P184, DOI 10.1109/TTHZ.2015.2392628
Teppati V, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139567626
Tewari P, 2012, P SPIE, V8261
Thomas B., 2014, P 39 INT C INFR MILL, P1
Thumm M, 2014, KIT SCI REPORTS, V7693
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Truong BCQ, 2015, IEEE T BIO-MED ENG, V62, P699, DOI 10.1109/TBME.2014.2364025
Turcinkova D, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4916653
Turner GM, 2002, J PHYS CHEM B, V106, P11716, DOI 10.1021/jp025844e
van der Valk NCJ, 2002, APPL PHYS LETT, V81, P1558, DOI 10.1063/1.1503404
van Dijk F, 2014, IEEE PHOTONIC TECH L, V26, P965, DOI 10.1109/LPT.2014.2309353
Vicario C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.213901
Vinh NQ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4918708
Vitiello MS, 2012, NAT PHOTONICS, V6, P525, DOI 10.1038/nphoton.2012.145
Vitiello MS, 2015, OPT EXPRESS, V23, P5167, DOI 10.1364/OE.23.005167
Vitiello MS, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6884
Wade A, 2009, NAT PHOTONICS, V3, P41, DOI 10.1038/NPHOTON.2008.251
Wallace B., 2015, SPIE NEWSROOM, DOI [10.1117/2.1201503.005871, DOI 10.1117/2.1201503.005871]
Wallace VP, 2004, BRIT J DERMATOL, V151, P424, DOI 10.1111/j.1365-2133.2004.06129.x
Wang FH, 2015, OPTICA, V2, P944, DOI 10.1364/OPTICA.2.000944
Weightman P, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/053001
Wienold M, 2014, OPT EXPRESS, V22, P3334, DOI 10.1364/OE.22.003334
Wilk R, 2007, C LAS EL BALT MD
Williams BS, 2006, ELECTRON LETT, V42, P89, DOI 10.1049/el:20063921
Williams GP, 2006, REP PROG PHYS, V69, P301, DOI 10.1088/0034-4885/69/2/R01
Williams GP, 2008, NAT PHYS, V4, P356, DOI 10.1038/nphys958
Williams MRC, 2013, J PHYS CHEM B, V117, P10444, DOI 10.1021/jp406730a
Williams R, 2013, PHYS MED BIOL, V58, P373, DOI 10.1088/0031-9155/58/2/373
Withayachumnankul W, 2008, J OPT SOC AM B, V25, P1059, DOI 10.1364/JOSAB.25.001059
Woerner M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/025039
Woodward RM, 2003, J INVEST DERMATOL, V120, P72, DOI 10.1046/j.1523-1747.2003.12013.x
Wu X, OPT LETT, V39, P5403
Wu ZR, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790427
Xu J, 2003, PROC SPIE, V5268, P19, DOI 10.1117/12.518533
Yamashita M, 2011, OPT EXPRESS, V19, P10864, DOI 10.1364/OE.19.010864
Yan F, 2013, J INFRARED MILLIM TE, V34, P489, DOI 10.1007/s10762-013-0005-4
Yang SH, 2014, IEEE T THZ SCI TECHN, V4, P575, DOI 10.1109/TTHZ.2014.2342505
Yeh KL, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2734374
Zamora A, 2015, IEEE MTT S INT MICR
Zhao JF, 2011, IEEE T ELECTRON DEV, V58, P1221, DOI 10.1109/TED.2011.2109723
Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431]
Zhou Y, 2010, PROG ELECTROMAGN RES, V105, P71, DOI 10.2528/PIER10041806
Zibik EA, 2009, NAT MATER, V8, P803, DOI [10.1038/nmat2511, 10.1038/NMAT2511]
Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B.
Huggard, Peter/U-2150-2019; Konishi, Kuniaki/AAN-3624-2020; Zeitler, J. Axel/B-4885-2008; Paoloni, Claudio/AAH-9824-2019; Hoffmann, Matthias C./N-1082-2019; Wallace, Vincent P/A-9320-2012; Johnston, Michael/B-9813-2008; Castro-Camus, Enrique/V-6861-2019; Krozer, Viktor/P-5623-2014; Hoffmann, Matthias C/B-3893-2009; PAOLONI, CLAUDIO/AAA-3211-2020; Gonokami, Makoto/F-3641-2012; Shams, Haymen/H-3754-2012; Ridler, Nick/AAN-9637-2020; Huber, Rupert/N-4126-2018
Konishi, Kuniaki/0000-0003-2389-9787; Zeitler, J. Axel/0000-0002-4958-0582; Hoffmann, Matthias C./0000-0002-3596-9853; Wallace, Vincent P/0000-0003-3814-5400; Johnston, Michael/0000-0002-0301-8033; Krozer, Viktor/0000-0002-2387-1947; Hoffmann, Matthias C/0000-0002-3596-9853; PAOLONI, CLAUDIO/0000-0002-0265-0862; Shams, Haymen/0000-0002-5333-6478; Huber, Rupert/0000-0001-6617-9283; Davies, Alexander/0000-0002-1987-4846; Seeds, Alwyn/0000-0002-5228-627X; Castro-Camus, Enrique/0000-0002-8218-9155; Cunningham, John/0000-0002-1805-9743; Naftaly, Mira/0000-0002-0671-822X; Cumming, David/0000-0002-7838-8362
Engineering and Physical Sciences Research CouncilUK Research \& Innovation (UKRI)Engineering \& Physical Sciences Research Council (EPSRC) [EP/P015883/1, EP/M00306X/1, EP/K023349/1, EP/M017095/1, EP/L026597/1, EP/J017671/1] Funding Source: researchfish; Natural Environment Research CouncilUK Research \& Innovation (UKRI)NERC Natural Environment Research Council [NER/Z/S/2003/00642, NE/L012375/1, NER/Z/S/2000/01292] Funding Source: researchfish; Science and Technology Facilities CouncilUK Research \& Innovation (UKRI)Science \& Technology Facilities Council (STFC) [ST/P002056/1] Funding Source: researchfish; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Molecular and Cellular BioscienceNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1616529] Funding Source: National Science Foundation
566
30
462
Iop publishing ltd
Bristol
1361-6463}, month = {Feb}, pages = {49}, type = {Review}, abstract = {

Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to {\textquoteright}real world{\textquoteright} applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

}, keywords = {ex-vivo, generation, metal wave-guides, near-field, performance, photoconductive emitters, Physics, quantum-cascade lasers, radiation, semiconductors, Terahertz, thz, time-domain spectroscopy}, isbn = {0022-3727}, doi = {https://doi.org/10.1088/1361-6463/50/4/043001}, author = {Dhillon, S. S. and Vitiello, M. S. and Linfield, E. H. and Davies, A. G. and Hoffmann, M. C. and Booske, J. and Paoloni, C. and Gensch, M. and Weightman, P. and Williams, G. P. and Castro-Camus, E. and Cumming, D. R. S. and Simoens, F. and Escorcia-Carranza, I. and Grant, J. and Lucyszyn, S. and Kuwata-Gonokami, M. and Konishi, K. and Koch, M. and Schmuttenmaer, C. A. and Cocker, T. L. and Huber, R. and Markelz, A. G. and Taylor, Z. D. and Wallace, V. P. and Zeitler, J. A. and Sibik, J. and Korter, T. M. and Ellison, B. and Rea, S. and Goldsmith, P. and Cooper, K. B. and Appleby, R. and Pardo, D. and Huggard, P. G. and Krozer, V. and Shams, H. and Fice, M. and Renaud, C. and Seeds, A. and Stohr, A. and Naftaly, M. and Ridler, N. and Clarke, R. and Cunningham, J. E. and Johnston, M. B.} } @article {254, title = {Importance of Protein Vibration Directionality on Function}, journal = {Biophysical Journal}, volume = {112}, number = {3}, year = {2017}, note = {Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191
1
58th Annual Meeting of the Biophysical-Society
Feb 15-19, 2014
San Francisco, CA
Biophys Soc
}, month = {Feb 3}, pages = {353A-353A}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2016.11.1916}, author = {Niessen, Katherine A. and Xu, Mengyang and Deng, Yanting and Snell, Edward H. and Markelz, Andrea G.} } @article {200, title = {Moving in the right direction: protein vibrations steering function}, journal = {Biophysical Journal}, volume = {112}, number = {5}, year = {2017}, pages = {933-942}, isbn = {0006-3495}, doi = {https://doi.org/10.1016/j.bpj.2016.12.049}, author = {Niessen, Katherine A and Xu, Mengyang and Paciaroni, Alessandro and Orecchini, Andrea and Snell, Edward H and Markelz, Andrea G} } @proceedings {246, title = {Anisotropic Absorption Measurements Reveal Protein Dynamical Transition in Intramolecular Vibrations}, year = {2016}, note = {ISI Document Delivery No.: BG7KC
Times Cited: 0
Cited Reference Count: 4
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Niessen K., 2015, BIOPHYSICAL REV
PETHIG R, 1995, PROTEIN SOLVENT INTE, P265
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Xu, Mengyang Niessen, Katherine Michki, Nigel Deng, Yanting Snell, Edward Markelz, A. G.
Irmmw-thz
Proceedings Paper
41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 25-30, 2016
Copenhagen, DENMARK
DTU, IEEE, QMC Instruments, Danish Ctr Laser Infrastructure, DTU Fotonik, Dept Photon Engn, ARL, Carl Sberg Fdn, AF Off Sci Res, Tech Univ Denmark, IEEE Microwave Theory \& Tech Soc, Azpect Photon, Ekspla, Hubner HF Syst Engn, I2S, Laser Quantum, Menlo Syst, Neaspec, Springer, TeraView, Virginia Diodes
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

Modeling has predicted that intramolecular structural vibrations enables proteins to access functionally important structural change. We show that the vibrational density of states and the isotropic absorption in the terahertz range are only weakly dependent on the protein functional state for several bench marking proteins. At the same time the direction of motions changes dramatically with functional state and with a resulting impact on the anisotropic absorption. Our anisotropic THz microscopy (ATM) measurements confirm this sensitivity. Here we apply the technique to the question of whether the protein dynamical transition (DT) is important to protein function. We find a strong anisotropic resonance at 70 cm(-1) rapidly increases in strength at temperatures above the DT. As these intramolecular vibrations enable protein structure to change conformation, the results suggest function will cease below DT for those proteins that require large scale conformational change.

}, isbn = {978-1-4673-8485-8}, doi = {10.1109/IRMMW-THz.2016.7758347}, author = {Xu, M. Y. and Niessen, K. and Michki, N. and Deng, Y. T. and Snell, E. and Markelz, A. G.} } @conference {546, title = {Direct Measurements of the Long-Range Collective Vibrations of Photoactive Yellow Protein}, booktitle = {30th Anniversary Symposium of The Protein Society}, year = {2016}, address = {Baltimore MD}, abstract = {

Long-range collective vibrations are thought to be crucial to protein functions. In the case of photoactive protein family, modeling suggests the intramolecular vibrations provide an efficient means of energy relaxation[1], feedback for enhancement of chromophore vibrations that promote structural transitions[2] and can assist in charge energy transfer[3]. As a paradigm of this family, photoactive yellow protein (PYP) is a cytoplasmic photocycling protein related to negative phototactic response to blue light in purple photosynthetic bacteria. PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond, whose vibrations were found to overlap calculated vibrations of the protein scaffold. Using our unique technique of anisotropic terahertz microscopy(ATM)[4], we measure the intramolecular vibrations for PYP for the first time, including cycling between ground and blue shift (pB) states. Room temperature ATM measurements are performed in the dark and with continuous wave illumination at 488nm, resulting in a steady pB state with approximately 5\% population conversion. In pB state, we find an overall decrease in the strength of resonant band in frequency range of 30-60 cm-1. Our calculated spectra using quasi-harmonic analysis indicate that our measurements are dominated by the protein vibrations, rather than the pCA chromophore, allowing us to characterize how the scaffold dynamics changes with functional states and mutations.

1. Levantino, M., et al. Nat Commun, 2015. 6.

2. Mataga, N., et al. Chem. Phys. Lett., 2002. 352(3-4): p. 220-225.

3. Fokas, A.S., et al. Photosynth. Res., 2014. 122

}, doi = {10.1002/pro.3026}, url = {https://onlinelibrary.wiley.com/doi/10.1002/pro.3026}, author = {Deng, Yanting and Xu, Mengyang and Niessen, Katherine A. and Schmidt, Marius and Markelz, Andrea G.} } @article {242, title = {Modulated orientation-sensitive terahertz spectroscopy}, journal = {Photonics Research}, volume = {4}, number = {3}, year = {2016}, note = {ISI Document Delivery No.: DM9BJ
Times Cited: 6
Cited Reference Count: 40
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Aguilar RV, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.087403
Aschaffenburg DJ, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.4729148
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Benkovic SJ, 2003, SCIENCE, V301, P1196, DOI 10.1126/science.1085515
Boehr DD, 2006, CHEM REV, V106, P3055, DOI 10.1021/cr050312q
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen Q, 1999, APPL PHYS LETT, V74, P3435, DOI 10.1063/1.124119
Daniel RM, 2003, ANNU REV BIOPH BIOM, V32, P69, DOI 10.1146/annurev.biophys.32.110601.142445
Diehl M, 1997, BIOPHYS J, V73, P2726, DOI 10.1016/S0006-3495(97)78301-2
Ebbinghaus S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fan ST, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/37/374009
Frauenfelder H, 2006, P NATL ACAD SCI USA, V103, P15469, DOI 10.1073/pnas.0607168103
Gabel F, 2002, Q REV BIOPHYS, V35, P327, DOI 10.1017/S0033583502003840
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giraud G, 2003, BIOPHYS J, V85, P1903, DOI 10.1016/S0006-3495(03)74618-9
Hammes GG, 2011, BIOCHEMISTRY-US, V50, P10422, DOI 10.1021/bi201486f
Jackson J.D., 1975, CLASSICAL ELECTRODYN
Jenkins GS, 2010, REV SCI INSTRUM, V81, DOI 10.1063/1.3480554
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Kim SJ, 2008, ANGEW CHEM INT EDIT, V47, P6486, DOI 10.1002/anie.200802281
Kindt JT, 1996, J PHYS CHEM-US, V100, P10373, DOI 10.1021/jp960141g
King MD, 2010, J PHYS CHEM A, V114, P7127, DOI 10.1021/jp101935n
Kroll J, 2007, VIB SPECTROSC, V43, P324, DOI 10.1016/j.vibspec.2006.03.010
Leitner DM, 2008, HFSP J, V2, P314, DOI 10.2976/1.2976661
Li M, 2011, OPT LETT, V36, P3633, DOI 10.1364/OL.36.003633
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
PETHIG R, 1995, PROTEIN SOLVENT INTE, P265
Planken PCM, 2001, J OPT SOC AM B, V18, P313, DOI 10.1364/JOSAB.18.000313
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
TORGESEN JL, 1964, SCIENCE, V146, P53, DOI 10.1126/science.146.3640.53
Vinh NQ, 2011, J AM CHEM SOC, V133, P8942, DOI 10.1021/ja200566u
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
Xu J, 2006, J PHYS CHEM B, V110, P24255, DOI 10.1021/jp064830w
Yasumatsu N, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.3683570
Singh, Rohit George, Deepu Koshy Bae, Chejin Niessen, K. A. Markelz, A. G.
George, Deepu/J-9882-2014
George, Deepu/0000-0003-0021-0705
National Science Foundation (NSF)National Science Foundation (NSF) [DBI2959989]; University at Buffalo (UB) [1126960-1-68255]; Los Alamos National Laboratory (LANL)United States Department of Energy (DOE)Los Alamos National Laboratory [1125895-1-71842]; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation
National Science Foundation (NSF) (DBI2959989); University at Buffalo (UB) (Holm Fund 1126960-1-68255); Los Alamos National Laboratory (LANL) (Molecular Crystal Studies 1125895-1-71842).
6

26
Optical soc amer
Washington}, month = {Jun}, pages = {A1-A8}, type = {Article}, abstract = {

Intramolecular vibrations of large macromolecules reside in the terahertz range. In particular, protein vibrations are closely spaced in frequency, resulting in a nearly continuous vibrational density of states. This density of vibrations interferes with the identification of specific absorption lines and their subsequent association with specific functional motions. This challenge is compounded with the absorption being dominated by the solvent and local relaxational motions. A strategy for removing the isotropic relaxational loss and isolating specific vibrations is to use aligned samples and polarization-sensitive measurements. Here, we demonstrate a technique to rapidly attain the anisotropic resonant absorbance using terahertz time domain spectroscopy and a spinning sample. The technique, modulated orientation-sensitive terahertz spectroscopy (MOSTS), has a nonzero signal only for anisotropic samples, as demonstrated by a comparison between a silicon wafer and a wire grid polarizer. For sucrose and oxalic acid molecular crystals, the MOSTS response is in agreement with modeled results for the intermolecular vibrations. Further, we demonstrate that, even in the presence of a large relaxational background, MOSTS isolates underlying vibrational resonances. (C) 2016 Chinese Laser Press

}, keywords = {absorption-spectroscopy, dynamics, enzyme catalysis, low-frequency modes, lysozyme, neutron-scattering, Optics, perspective, polarization modulation, proteins, water}, isbn = {2327-9125}, doi = {https://doi.org/10.1364/PRJ.4.0000A1}, author = {Singh, R. and George, D. K. and Bae, C. J. and Niessen, K. A. and Markelz, A. G.} } @conference {547, title = { The Role of Dynamical Transition in Protein Function: Coupling of Protein Collective Vibrations and Water Dynamics}, booktitle = {30th Anniversary Symposium of The Protein Society}, year = {2016}, address = {Baltimore, MD}, abstract = {

Computational simulations have revealed protein collective vibrations prompt structural rearrangements to accomplish biological function. However, the biological importance of collective vibrations has not been experimentally demonstrated. The attempts have been hampered by the inability to distinguish localized water or side-chain relaxational motions from protein long-range vibrations using conventional techniques. The dynamical transition (DT), extensively observed using X-ray, neutron scattering, NMR and terahertz techniques [1,2], describes a rapid increase in the temperature-dependent dynamics of critically hydrated proteins above \~{}220 K, and has been attributed to thermally activated solvent motions. While some proteins lose function below the specific temperature, others do not. We suggest the difference arises from the nature of the required motions for function. Specifically, functional motions enabled by long-range vibrations will be vulnerable to DT, which require surrounding solvent to be sufficiently mobile. We explored the coupling of protein vibrations to solvent dynamics by applying a recently developed technique, anisotropy terahertz microscopy [3], to directly measure the collective vibrations for lysozyme and investigate the temperature dependence in 150-300 K range. We find long-range intramolecular vibrations occur at 220K and rapidly increase in strength with increasing temperature, consistent with enhanced access above the DT. The results suggest collective vibrations are slaved to DT, and those proteins with function reliant on these motions will cease function below DT.

1. Doster,W., et al. Phys.Rev.Lett., 2010.104(9):098101.

2. Niessen,K., et al. Biophys.Rev., 2015.7,201.

3. Acbas,G., et al. Nat.Commun., 2014.5,3076.

}, doi = {10.1002/pro.3026}, url = {https://onlinelibrary.wiley.com/doi/10.1002/pro.3026}, author = {Xu, Mengyang and Niessen, Katherine and Deng, Yanting and Michki, Nigel and Snell, Edward and Markelz, Andrea} } @proceedings {240, title = {Measurements and Calculations of Protein Intramolecular Vibrations in the THz Range}, year = {2014}, note = {ISI Document Delivery No.: BF0IL
Times Cited: 0
Cited Reference Count: 13
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Best RB, 2012, J CHEM THEORY COMPUT, V8, P3257, DOI 10.1021/ct300400x
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
BRUCCOLERI RE, 1986, BIOPOLYMERS, V25, P1767, DOI 10.1002/bip.360250916
CHEETHAM JC, 1992, J MOL BIOL, V224, P613, DOI 10.1016/0022-2836(92)90548-X
Dong J, 1999, ACTA CRYSTALLOGR D, V55, P745, DOI 10.1107/S0907444998016047
Guo JN, 2014, BIOCHEMISTRY-US, V53, P2855, DOI 10.1021/bi500238q
Hammes-Schiffer S, 2006, ANNU REV BIOCHEM, V75, P519, DOI 10.1146/annurev.biochem.75.103004.142800
Henzler-Wildman KA, 2007, NATURE, V450, P838, DOI 10.1038/nature06410
Jo S, 2008, J COMPUT CHEM, V29, P1859, DOI 10.1002/jcc.20945
PERUTZ MF, 1970, NATURE, V228, P726, DOI 10.1038/228726a0
TEETER MM, 1990, J PHYS CHEM-US, V94, P8091, DOI 10.1021/j100384a021
Niessen, Katherine A. Snell, Edward Markelz, A. G.
Irmmw-thz
Proceedings Paper
39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)
Sep 14-19, 2014
Tucson, AZ
THORLABS, Tydex, TOPTICA Photon, Bruker, Gentec EO, Lake Shore Cryotron, Ekspla, Zomega, TeraSense, Insight Product, Emcore, QMC Instruments, TeraView, NeaSpec, Advantest, MenloSystems, Traycer, Microtech Instruments Inc, LongWave Photon, Virginia Diodes Inc, ASU, MTT S, Journal Infrared Millimeter \& Tera Hertz Waves, Tera Hertz Sci \& Technol, Army Res Off
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

We report the calculations and measurements of intramolecular vibrational modes and their dependence on inhibitor binding in the THz range. We see an increase in anisotropic THz absorption at low frequency with inhibitor binding in both the measurements and calculations. This surprising result suggests an increase in flexibility with binding. We will discuss the possible reasons for this discrepancy.

}, keywords = {charmm}, isbn = {978-1-4799-3877-3}, doi = {10.1109/IRMMW-THz.2014.6956080}, author = {Niessen, K. A. and Snell, E. and Markelz, A. G.} } @article {219, title = {Optical measurements of long-range protein vibrations}, journal = {Nature Communications}, volume = {5}, year = {2014}, note = {ISI Document Delivery No.: AA4RQ
Times Cited: 101
Cited Reference Count: 48
Cited References:
AUSTIN RH, 1989, PHYS REV LETT, V62, P1912, DOI 10.1103/PhysRevLett.62.1912
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Balabin IA, 2000, SCIENCE, V290, P114, DOI 10.1126/science.290.5489.114
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Barth A, 2002, Q REV BIOPHYS, V35, P369, DOI 10.1017/S0033583502003815
Benkovic SJ, 2003, SCIENCE, V301, P1196, DOI 10.1126/science.1085515
Brooks BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brooks CL, 1988, PROTEINS THEORETICAL
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Ding T, 2012, VIB SPECTROSC, V61, P144, DOI 10.1016/j.vibspec.2012.02.020
GENZEL L, 1976, BIOPOLYMERS, V15, P219, DOI 10.1002/bip.1976.360150115
George DK, 2013, IEEE T THZ SCI TECHN, V3, P288, DOI 10.1109/TTHZ.2013.2256233
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Hafner J, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3646312
Hammes GG, 2002, BIOCHEMISTRY-US, V41, P8221, DOI 10.1021/bi0260839
He YF, 2011, BIOPHYS J, V100, P1058, DOI 10.1016/j.bpj.2010.12.3731
KACHALOVA GS, 1991, FEBS LETT, V284, P91, DOI 10.1016/0014-5793(91)80769-Y
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Knab JR, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3467192
LEVY RM, 1984, J PHYS CHEM-US, V88, P4233, DOI 10.1021/j150663a009
Lipps F, 2012, PHYS CHEM CHEM PHYS, V14, P6375, DOI 10.1039/c2cp23760a
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
MacKerell AD, 1998, J PHYS CHEM B, V102, P3586, DOI 10.1021/jp973084f
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Meinhold L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.138101
Meinhold L, 2007, PROTEINS, V66, P941, DOI 10.1002/prot.21246
Mittleman D.M., 2003, SENSING TERAHERTZ RA
MOELLER KD, 1992, BIOPHYS J, V61, P276, DOI 10.1016/S0006-3495(92)81834-9
Perutz MF, 1998, ANNU REV BIOPH BIOM, V27, P1, DOI 10.1146/annurev.biophys.27.1.1
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
Sakai K., 2005, TERAHERTZ OPTOELECTR
Schumacher M, 2002, NATURE, V417, P501, DOI 10.1038/417501a
Siegrist K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
SMITH J, 1990, J CHEM PHYS, V93, P2974, DOI 10.1063/1.458885
SMITH JC, 1991, Q REV BIOPHYS, V24, P227, DOI 10.1017/S0033583500003723
TEETER MM, 1990, J PHYS CHEM-US, V94, P8091, DOI 10.1021/j100384a021
TIDOR B, 1994, J MOL BIOL, V238, P405, DOI 10.1006/jmbi.1994.1300
Tych KM, 2011, J APPL CRYSTALLOGR, V44, P129, DOI 10.1107/S0021889810043372
Urabe H, 1998, BIOPHYS J, V74, P1533, DOI 10.1016/S0006-3495(98)77865-8
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Xie AH, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.018102
Xu J, 2006, J PHYS CHEM B, V110, P24255, DOI 10.1021/jp064830w
Acbas, Gheorghe Niessen, Katherine A. Snell, Edward H. Markelz, A. G.
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191; Markelz, Andrea/0000-0003-0443-4319
National Science Foundation MRIboolean AND2 grant [DBI2959989]
We thank Yunfen He and Benjamin Keen for their assistance with calculations. All calculations performed using facilities provided by The Center for Computational Research, SUNY, Buffalo. We thank the National Science Foundation MRI boolean AND 2 grant DBI2959989 for support.
101
4
108
Nature publishing group
London}, month = {Jan}, pages = {7}, type = {Article}, abstract = {

Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies \>10 cm(-1). The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

}, keywords = {absorption, crystals, dynamics, frequency raman-spectra, hydration, lysozyme, motions, Science \& Technology - Other Topics, sensitivity, simulations, spectroscopy}, isbn = {2041-1723}, doi = {https://doi.org/10.1038/ncomms4076}, author = {Acbas, G. and Niessen, K. A. and Snell, E. H. and Markelz, A. G.} } @proceedings {218, title = {Measuring phonons in protein crystals}, volume = {8623}, year = {2013}, note = {ISI Document Delivery No.: BGG42
Times Cited: 0
Cited Reference Count: 5
Cited References:
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
BROOKS B, 1985, P NATL ACAD SCI USA, V82, P4995, DOI 10.1073/pnas.82.15.4995
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Acbas, Gheorghe Niessen, Katherine A. George, Deepu K. Snell, Edward Markelz, A. G.
Proceedings Paper
Conference on Ultrafast Phenomena and Nanophotonics XVII
Feb 03-06, 2013
San Francisco, CA
SPIE, Femtolasers Inc
Snell, Edward/G-2055-2018; George, Deepu/J-9882-2014
Snell, Edward/0000-0001-8714-3191; George, Deepu/0000-0003-0021-0705; Markelz, Andrea/0000-0003-0443-4319
National Science Foundation MRI2 [DBI2959989]
We thank the National Science Foundation MRI2 grant DBI2959989 for support.
1000 20th st, po box 10, bellingham, wa 98227-0010 usa
0277-786x
862305}, publisher = {Spie-Int Soc Optical Engineering}, address = {Bellingham}, abstract = {

Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.

}, keywords = {correlated motions, dynamics, mode, molecular crystals, molecular vibrations, normal modes, phonons, protein dynamics, spectroscopy, Terahertz}, isbn = {978-0-8194-9392-7}, doi = {https://doi.org/10.1117/12.2006275}, author = {Acbas, G. and Niessen, K. A. and George, D. K. and Snell, E. and Markelz, A. G.}, editor = {Betz, M. and Elezzabi, A. Y. and Song, J. J. and Tsen, K. T.} } @article {202, title = {Improved mode assignment for molecular crystals through anisotropic terahertz spectroscopy}, journal = {The Journal of Physical Chemistry A}, volume = {116}, number = {42}, year = {2012}, pages = {10359-10364}, isbn = {1089-5639}, doi = {https://doi.org/10.1021/jp307288r}, author = {Singh, Rohit and George, Deepu Koshy and Benedict, Jason B and Korter, Timothy M and Markelz, Andrea G} } @proceedings {307, title = {Multi-component response in multilayer graphene revealed through terahertz and infrared magneto-spectroscopy}, year = {2012}, month = {9/2012}, address = {Wollongong, Australia}, doi = {10.1109/IRMMW-THz.2012.6380102}, author = {Ellis, C. T. and Stier, A. V. and George, D. K. and Tischler, J. G. and Glaser, E. R. and Myers-Ward, R. L. and Tedesco, J. L. and Eddy, C. R. and Gaskill, D. K. and Markelz, A. G. and Cerne, J.} } @proceedings {220, title = {Orientation Sensitive Terahertz Resonances Observed in Protein Crystals}, year = {2012}, note = {ISI Document Delivery No.: BJT74
Times Cited: 1
Cited Reference Count: 15
Cited References:
Arora K, 2007, P NATL ACAD SCI USA, V104, P18496, DOI 10.1073/pnas.0706443104
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Balu R, 2008, BIOPHYS J, V94, P3217, DOI 10.1529/biophysj.107.105163
BROOKS B, 1985, P NATL ACAD SCI USA, V82, P4995, DOI 10.1073/pnas.82.15.4995
Goodey NM, 2008, NAT CHEM BIOL, V4, P474, DOI 10.1038/nchembio.98
Hammes-Schiffer S, 2006, ANNU REV BIOCHEM, V75, P519, DOI 10.1146/annurev.biochem.75.103004.142800
Jarymowycz VA, 2006, CHEM REV, V106, P1624, DOI 10.1021/cr040421p
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Knab JR, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3467192
Lange OF, 2008, SCIENCE, V320, P1471, DOI 10.1126/science.1157092
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
Mellinger JS, 2007, J PHYS CHEM A, V111, P10977, DOI 10.1021/jp074975i
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
Tych KM, 2011, J APPL CRYSTALLOGR, V44, P129, DOI 10.1107/S0021889810043372
Acbas, Gheorghe Snell, Edward Markelz, A. G.
Irmmw-thz
Proceedings Paper
37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 23-28, 2012
Univ Wollongong, Wollongong, AUSTRALIA
IEEE, USN, Off Naval Res Sci \& Technol, ETRI, UOW, Sch Engn Phys, Ctr Ultrahigh Bandwidth Devices Opt Syst, Victoria Suntech Adv Solar Facil, Swinburne, Ctr Micro Photon, Edinburgh Photon, Tydex, TRAS Inc, Inst Photon \& Opt Sci, LakeShore, Australian Synchrotron, CSIRO, Univ Wollongong, Inst Superconducting \& Elect Mat, Ctr Med Radiat Phys, Univ Sydney, IEEE Microwave Theory \& Tech Soc
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

A method is presented for measuring anisotropic THz response for small crystals, Crystal Anisotropy Terahertz Microscopy (CATM). Sucrose CATM measurements find the expected anisotropic phonon resonances. CATM measurements of protein crystals find the expected broadband water absorption is suppressed and strong orientation and hydration dependent resonant features.

}, keywords = {dynamics, mode}, isbn = {978-1-4673-1597-5}, doi = {https://doi.org/10.1109/IRMMW-THz.2012.6380168}, author = {Acbas, G. and Snell, E. and Markelz, A. G.} } @article {186, title = {Terahertz magneto-optical polarization modulation spectroscopy}, journal = {JOSA BJOSA B}, volume = {29}, number = {6}, year = {2012}, pages = {1406-1412}, isbn = {1520-8540}, doi = {https://doi.org/10.1364/JOSAB.29.001406}, author = {George, Deepu K and Stier, Andreas V and Ellis, Chase T and McCombe, Bruce D and {\v C}erne, John and Markelz, Andrea G} } @article {221, title = {Terahertz Response and Colossal Kerr Rotation from the Surface States of the Topological Insulator Bi2Se3}, journal = {Physical Review Letters}, volume = {108}, number = {8}, year = {2012}, note = {ISI Document Delivery No.: 896NY
Times Cited: 164
Cited Reference Count: 35
Cited References:
Akhmerov AR, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.216404
Alpichshev Z, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.016401
Analytis JG, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205407
Bansal N., ARXIV11045709
Benia HM, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.177602
Bianchi M, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1131
Butch NP, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.241301
Chen J, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.241304
Chen YL, 2009, SCIENCE, V325, P178, DOI 10.1126/science.1173034
Essin AM, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.146805
Eto K, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195309
Fu L, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.045302
Fu L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.096407
Hsieh D, 2008, NATURE, V452, P970, DOI 10.1038/nature06843
Hsieh D, 2009, NATURE, V460, P1101, DOI 10.1038/nature08234
Jenkins GS, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125120
King PDC, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.096802
LaForge AD, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.125120
Lan YP, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.205109
Maciejko J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.166803
Moore JE, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.121306
Qi XL, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.195424
Qu DX, 2010, SCIENCE, V329, P821, DOI 10.1126/science.1189792
Roushan P, 2009, NATURE, V460, P1106, DOI 10.1038/nature08308
Roy R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.195322
Steinberg H, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.233101
Sushkov AB, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125110
THOULESS DJ, 1982, PHYS REV LETT, V49, P405, DOI 10.1103/PhysRevLett.49.405
Tkachov G, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.035405
Tse WK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.161104
Tse WK, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.057401
VONKLITZING K, 1980, PHYS REV LETT, V45, P494, DOI 10.1103/physrevlett.45.494
Xia Y, 2009, NAT PHYS, V5, P398, DOI 10.1038/NPHYS1274
Xiong J., PHYSICA A E IN PRESS
Zhang XA, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.245107
Aguilar, R. Valdes Stier, A. V. Liu, W. Bilbro, L. S. George, D. K. Bansal, N. Wu, L. Cerne, J. Markelz, A. G. Oh, S. Armitage, N. P.
George, Deepu/J-9882-2014; Aguilar, Rolando Valdes/A-6637-2012; Liu, Wei/H-5999-2012; Wu, Liang/C-8715-2015
George, Deepu/0000-0003-0021-0705; Aguilar, Rolando Valdes/0000-0002-4321-4792; Wu, Liang/0000-0003-1696-7809; Markelz, Andrea/0000-0003-0443-4319
"Institute for Quantum Matter" DOE [DE-FG02-08ER46544]; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; NSFNational Science Foundation (NSF) [MRI-R2 0959989, DMR-1006078, DMR-0845464]; IAMDN of Rutgers University; ONROffice of Naval Research [N000140910749]; Division Of Materials ResearchNational Science Foundation (NSF)NSF - Directorate for Mathematical \& Physical Sciences (MPS) [0845464] Funding Source: National Science Foundation
The authors would like to thank H. D. Drew, J. Hancock, Z. Hao, G. S. Jenkins, A. Kuzmenko, A. MacDonald, N. A. Mecholsky, A. J. Pearson, O. Tchernyshyov, W-K. Tse, and Y. Wan for helpful discussions and/or correspondences. Support for the measurements at JHU was provided under the auspices of the "Institute for Quantum Matter" DOE DE-FG02-08ER46544 and the Gordon and Betty Moore Foundation. The work at UB was supported by NSF MRI-R2 0959989 and NSF DMR-1006078. The work at Rutgers was supported by IAMDN of Rutgers University, NSF DMR-0845464 and ONR N000140910749.
166
3
157
Amer physical soc
College pk}, month = {Feb}, pages = {5}, type = {Article}, abstract = {

We report the THz response of thin films of the topological insulator Bi2Se3. At low frequencies, transport is essentially thickness independent showing the dominant contribution of the surface electrons. Despite their extended exposure to ambient conditions, these surfaces exhibit robust properties including narrow, almost thickness-independent Drude peaks, and an unprecedentedly large polarization rotation of linearly polarized light reflected in an applied magnetic field. This Kerr rotation can be as large as 65 degrees and can be explained by a cyclotron resonance effect of the surface states.

}, keywords = {bi2te3, Physics}, isbn = {0031-9007}, doi = {https://doi.org/10.1103/physrevlett.108.087403}, author = {Aguilar, R. V. and Stier, A. V. and Liu, W. and Bilbro, L. S. and George, D. K. and Bansal, N. and Wu, L. and Cerne, J. and Markelz, A. G. and Oh, S. and Armitage, N. P.} } @proceedings {244, title = {Magneto Optical Polarization Measurements using THz Polarization Modulation Spectroscopy}, year = {2011}, note = {ISI Document Delivery No.: BJT73
Times Cited: 0
Cited Reference Count: 3
Cited References:
Cerne J, 2000, PHYS REV B, V61, P8133, DOI 10.1103/PhysRevB.61.8133
Crassee I, 2011, NAT PHYS, V7, P48, DOI 10.1038/NPHYS1816
Tse WK, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.057401
Stier, A. V. George, D. Markelz, A. G. Cerne, J.
Irmmw-thz
Proceedings Paper
36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Oct 02-07, 2011
Houston, TX
Rice Univ, IEEE Microwave Theory \& Tech Soc, NASA, California Inst Technol, Jet Prop Lab, Univ Wollongong
George, Deepu/J-9882-2014
George, Deepu/0000-0003-0021-0705
345 e 47th st, new york, ny 10017 usa
2162-2027}, publisher = {Ieee}, address = {New York}, abstract = {

We report a new broad band technique for rapidly measuring the complex Faraday and Kerr rotations in materials such as topological insulators and graphene, combining the distinct advantages of THz time domain spectroscopy and polarization modulation techniques. The performance of the system is demonstrated using GaAs two dimensional electron gas in a magnetic field.

}, isbn = {978-1-4577-0509-0}, doi = {10.1364/JOSAB.29.001406}, author = {Stier, A. V. and George, D. and Markelz, A. G. and Cerne, J.}, editor = {Koch, M.} } @conference {330, title = { Characterization of Phonons in Molecular Crystals }, booktitle = {Frontiers in Optics 2010}, year = {2010}, month = {10/2010}, address = {Rochester}, abstract = {

We demonstrate a new technique for characterizing the phonons in molecular crystals, Modulated Orientation Sensitive Terahertz Spectroscopy (MOSTS). The technique suppresses crystal defects and solvent contributions, and enhances contributions due to molecular structure and anisotropy.

}, doi = {10.1364/FIO.2010.JWA19}, author = {Singh, R. and George, D. and Markelz, A. G.} } @article {243, title = {Terahertz response of quantum point contacts}, journal = {Applied Physics LettersApplied Physics LettersApplied Physics Letters}, volume = {92}, number = {22}, year = {2008}, note = {ISI Document Delivery No.: 310KL
Times Cited: 25
Cited Reference Count: 21
Cited References:
Aizin GR, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2800369
ARNONE DD, 1995, APPL PHYS LETT, V66, P3149, DOI 10.1063/1.113705
FENG SC, 1993, PHYS REV B, V48, P5354, DOI 10.1103/PhysRevB.48.5354
Hashiba H, 2004, APPL PHYS LETT, V85, P6036, DOI 10.1063/1.1834716
HU Q, 1993, APPL PHYS LETT, V62, P837, DOI 10.1063/1.108567
Hu Q, 1996, SEMICOND SCI TECH, V11, P1888, DOI 10.1088/0268-1242/11/12/021
JANSSEN TJBM, 1994, J PHYS-CONDENS MAT, V6, pL163, DOI 10.1088/0953-8984/6/13/002
Kabir NA, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2357605
KARADI C, 1994, J OPT SOC AM B, V11, P2566, DOI 10.1364/JOSAB.11.002566
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Lee M, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1851606
MITTLEMAN D, 2002, SPRINGER SERIES OPTI
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Ryzhii V, 2006, JPN J APPL PHYS 2, V45, pL1118, DOI 10.1143/JJAP.45.L1118
Shaner EA, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2735943
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
Teppe F, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2005394
VANHOUTEN H, 1992, SEMICONDUCT SEMIMET, P9
WYSS RA, 1993, APPL PHYS LETT, V63, P1522, DOI 10.1063/1.110736
WYSS RA, 1995, APPL PHYS LETT, V66, P1144, DOI 10.1063/1.113840
Song, J. W. Kabir, N. A. Kawano, Y. Ishibashi, K. Aizin, G. R. Mourokh, L. Reno, J. L. Markelz, A. G. Bird, J. P.
Ishibashi, Koji/G-7065-2012; Bird, Jonathan P/G-4068-2010
Ishibashi, Koji/0000-0001-8131-9969; Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
27

6
Amer inst physics
Melville
1077-3118}, month = {Jun}, pages = {3}, type = {Article}, abstract = {

We measure a clear terahertz response in the low-temperature conductance of a quantum point contact at 1.4 and 2.5 THz. We show that this photoresponse does not arise from a heating effect, but that it is instead excellently described by a classical model of terahertz-induced gate-voltage rectification. This effect is distinct from the rectification mechanisms that have been studied previously, being determined by the phase-dependent interference of the source drain and gate voltage modulations induced by the terahertz field. (C) 2008 American Institute of Physics.

}, keywords = {detector, devices, field-effect transistors, Physics, plasma-waves, radiation, resonant detection, subterahertz, transport}, isbn = {0003-6951}, doi = {https://doi.org/10.1063/1.2938416}, author = {Song, J. W. and Kabir, N. A. and Kawano, Y. and Ishibashi, K. and Aizin, G. R. and Mourokh, L. and Reno, J. L. and Markelz, A. G. and Bird, J. P.} } @article {229, title = {Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems}, journal = {Applied Physics Letters}, volume = {89}, number = {13}, year = {2006}, note = {ISI Document Delivery No.: 089JE
Times Cited: 18
Cited Reference Count: 16
Cited References:
ANDO T, 1982, REV MOD PHYS, V54, P437, DOI 10.1103/RevModPhys.54.437
ANDO T, 1989, HIGH MAGNETIC FIELDS, V2, P164
Ashcroft NW, 1976, SOLID STATE PHYS, P1
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Cerne J, 2000, PHYS REV B, V61, P8133, DOI 10.1103/PhysRevB.61.8133
COLERIDGE PT, 1991, PHYS REV B, V44, P3793, DOI 10.1103/PhysRevB.44.3793
Dorozhkin PS, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2035883
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Kukushkin IV, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1856143
MADELUNG O, 1996, SEMICONDUCTORS BASIC, P109
MCKNIGHT SW, 1987, INFRARED PHYS, V27, P327, DOI 10.1016/0020-0891(87)90074-1
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Sadofyev YG, 2002, APPL PHYS LETT, V81, P1833, DOI 10.1063/1.1504882
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
ZAWADZKI W, 1974, ADV PHYS, V23, P435, DOI 10.1080/00018737400101371
Kabir, N. A. Yoon, Y. Knab, J. R. Chen, J. -Y. Markelz, A. G. Reno, J. L. Sadofyev, Y. Johnson, S. Zhang, Y. -H. Bird, J. P.
Bird, Jonathan P/G-4068-2010
Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
18

15
Amer inst physics
Melville}, month = {Sep}, pages = {3}, type = {Article}, abstract = {

Frequency-dependent complex conductivity of high-mobility GaAs and InAs two-dimensional-electron-gas (2DEG) systems is studied by terahertz time domain spectroscopy. Determining the momentum relaxation time from a Drude model, the authors find a lower value than that from dc measurements, particularly at high frequencies/low temperatures. These deviations are consistent with the ratio tau(t)/tau(q,) where tau(q) is the full scattering time. This suggests that small-angle scattering leads to weaker heating of 2DEGs at low temperatures than expected from dc mobilit9y. (c) 2006 American Institute of Physics.

}, keywords = {field-effect transistors, photoconductivity, Physics, plasma-waves, radiation, resonant detection, subterahertz}, isbn = {0003-6951}, doi = {10.1063/1.2357605}, author = {Kabir, N. A. and Yoon, Y. and Knab, J. R. and Chen, J. Y. and Markelz, A. G. and Reno, J. L. and Sadofyev, Y. and Johnson, S. and Zhang, Y. H. and Bird, J. P.} } @proceedings {190, title = {Critical hydration and temperature effects on terahertz biomolecular sensing}, volume = {5995}, year = {2005}, pages = {59950P}, publisher = {International Society for Optics and Photonics}, doi = {10.1117/12.630854}, author = {Knab, Joseph and Shah, Binni and Chen, Jing-Yin and Markelz, Andrea} } @article {294, title = {Direct measurements of optical phonons in SrTiO3 nanosystems}, journal = {Physica E: Low-dimensional Systems and Nanostructures}, volume = {19}, year = {2003}, month = {2003/07/01/}, pages = {236 - 239}, abstract = {

We use terahertz time domain spectroscopy to examine finite size effects on the optical phonon modes in SrTiO3 thin films. In temperature-dependent measurements we find a near absence of mode softening in the TO1 phonon frequency. Furthermore we see an increase in the soft mode frequency with reduced thickness. Both of these results correlate well with the reduced dielectric response observed for nanoscale ferroelectric systems.

}, keywords = {Ferroelectrics, Finite size, Mode softening, phonons, Strontium titanate, Terahertz}, isbn = {1386-9477}, doi = {10.1016/S1386-9477(03)00305-9}, url = {https://www.sciencedirect.com/science/article/pii/S1386947703003059}, author = {Wolpert, D and Korolev, K and Sachs, S and Knab, J and Cox, W and Cerne, J and Markelz, A.G and Zhao, T and Ramesh, R and Moeckly, B.H} } @article {258, title = {Temperature of quasi-two-dimensional electron gases under steady-state terahertz drive}, journal = {Applied Physics Letters}, volume = {68}, number = {6}, year = {1996}, note = {ISI Document Delivery No.: TT663
Times Cited: 59
Cited Reference Count: 12
Cited References:
ASMAR NG, 1995, PHYS REV B, V51, P18041, DOI 10.1103/PhysRevB.51.18041
BETHUNE DS, 1989, J OPT SOC AM B, V6, P910, DOI 10.1364/JOSAB.6.000910
CERNE J, 1995, PHYS REV B, V51, P5253, DOI 10.1103/PhysRevB.51.5253
CONWELL E, 1967, SOLID STATE PHYS S, V9
GUPTA R, 1992, PHYS REV B, V46, P7745, DOI 10.1103/PhysRevB.46.7745
HEYMAN JN, 1994, PHYS REV LETT, V72, P2183, DOI 10.1103/PhysRevLett.72.2183
KOMIYAMA S, 1985, PHYS REV B, V32, P5532, DOI 10.1103/PhysRevB.32.5532
MARKELZ AG, 1994, SOLID STATE ELECTRON, V37, P1243, DOI 10.1016/0038-1101(94)90399-9
MARKELZ AG, 1995, THESIS U CALIFORNIA
SHAH J, 1984, APPL PHYS LETT, V44, P322, DOI 10.1063/1.94739
SHAH J, 1978, SOLID STATE ELECTRON, V21, P43, DOI 10.1016/0038-1101(78)90113-2
YANG CH, 1985, PHYS REV LETT, V55, P2359, DOI 10.1103/PhysRevLett.55.2359
Asmar, NG Cerne, J Markelz, AG Gwinn, EG Sherwin, MS Campman, KL Gossard, AC
Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
59

7
Amer inst physics
Woodbury}, month = {Feb}, pages = {829-831}, type = {Article}, abstract = {

We use photoluminescence to study the time-average energy distribution of electrons in the presence of strong steady-state drive at terahertz (THz) frequencies, in a modulation-doped 125 Angstrom AlGaAs/GaAs square well that is held at low lattice temperature TL. We find that the energy distribution can be characterized by an effective electron temperature, T-e(\>T-L), that agrees well with values estimated from the THz-illuminated, dc conductivity. This agreement indicates that under strong THz drive, LO phonon scattering dominates both energy and momentum relaxation; that the carrier distribution maintains a heated, thermal form; and that phonon drift effects are negligible. (C) 1996 American Institute of Physics.

}, keywords = {hot-electrons, Physics}, isbn = {0003-6951}, doi = {10.1063/1.116547}, author = {Asmar, N. G. and Cerne, J. and Markelz, A. G. and Gwinn, E. G. and Sherwin, M. S. and Campman, K. L. and Gossard, A. C.} } @article {265, title = {Undressing a collective intersubband excitation in a quantum well}, journal = {Physical Review Letters}, volume = {76}, number = {13}, year = {1996}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
78}, month = {Mar 25}, pages = {2382-2385}, abstract = {

We have experimentally measured the 1-2 intersubband absorption in a single 40 nm wide modulation-doped Al0.3Ga0.7As/GaAs square quantum well as a function of frequency, intensity, and charge density. The low-intensity depolarization-shifted absorption occurs near 80 cm(-1) (10 meV or 2.4 THz), nearly 30\% higher than the intersubband spacing. At higher intensities, the absorption peak shifts to lower frequencies. Our data are in good agreement with a theory proposed by Zaluzny, which attributes the redshift to a reduction in the depolarization shift as the excited subband becomes populated.

}, isbn = {0031-9007}, doi = {10.1103/PhysRevLett.76.2382}, author = {Craig, K. and Galdrikian, B. and Heyman, J. N. and Markelz, A. G. and Williams, J. B. and Sherwin, M. S. and Campman, K. and Hopkins, P. F. and Gossard, A. C.} } @article {272, title = {NONLINEAR QUANTUM DYNAMICS IN SEMICONDUCTOR QUANTUM-WELLS}, journal = {Physica D-Nonlinear Phenomena}, volume = {83}, number = {1-3}, year = {1995}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
14th Annual International Conference of the Center-for-Nonlinear-Studies - Quantum Complexity in Mesoscopic Systems
May 16-20, 1994
Los alamos, nm
Ctr nonlinear studies
34}, month = {May 15}, pages = {229-242}, abstract = {

We discuss recent measurements of the nonlinear response of electrons in wide quantum wells driven by intense electromagnetic radiation at terahertz frequencies. The theme is the interplay of quantum mechanics, strong periodic driving, the electron-electron interaction and dissipation. We discuss harmonic generation from an asymmetric double quantum well in which the effects of dynamic screening are important. Measurements and theory are found to be in good agreement. We also discuss intensity-dependent absorption in a 400 Angstrom square quantum well. A new nonlinear quantum effect occurs, in which the frequency at which electromagnetic radiation is absorbed shifts to the red with increasing intensity. The preliminary experimental results are in agreement with a theory by Zaluzny, in which the source of the nonlinearity is the self-consistent potential in the Hartree approximation for the electron dynamics.

}, isbn = {0167-2789}, doi = {10.1016/0167-2789(94)00266-S}, author = {Sherwin, M. S. and Craig, K. and Galdrikian, B. and Heyman, J. and Markelz, A. and Campman, K. and Fafard, S. and Hopkins, P. F. and Gossard, A.} } @article {262, title = {QUENCHING OF EXCITONIC QUANTUM-WELL PHOTOLUMINESCENCE BY INTENSE FAR-INFRARED RADIATION - FREE-CARRIER HEATING}, journal = {Physical Review B}, volume = {51}, number = {8}, year = {1995}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
29}, month = {Feb 15}, pages = {5253-5262}, isbn = {0163-1829}, doi = {10.1103/PhysRevB.51.5253}, author = {Cerne, J. and Markelz, A. G. and Sherwin, M. S. and Allen, S. J. and Sundaram, M. and Gossard, A. C. and Vanson, P. C. and Bimberg, D.} } @article {259, title = {RESONANT-ENERGY RELAXATION OF TERAHERTZ-DRIVEN 2-DIMENSIONAL ELECTRON GASES}, journal = {Physical Review B}, volume = {51}, number = {24}, year = {1995}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
119}, month = {Jun 15}, pages = {18041-18044}, isbn = {0163-1829}, doi = {10.1103/PhysRevB.51.18041}, author = {Asmar, N. G. and Markelz, A. G. and Gwinn, E. G. and Cerne, J. and Sherwin, M. S. and Campman, K. L. and Hopkins, P. F. and Gossard, A. C.} } @proceedings {319, title = {Far-infrared harmonic generation from semiconductor heterostructures}, volume = {1854}, year = {1994}, pages = {48-55}, author = {Markelz, A.G. and Gwinn, E. G. and Sherwin, M. S. and Heyman, J. N. and Nguyen, C. and Kroemer, H.} } @article {264, title = {FAR-INFRARED SATURATION SPECTROSCOPY OF A SINGLE SQUARE-WELL}, journal = {Semiconductor Science and Technology}, volume = {9}, number = {5}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
S
8th International Conference on Hot Carriers in Semiconductors
Aug 16-20, 1993
Oxford univ, oxford, england
Sci \& engn res council; royal soc; brit council; oxford univ
31}, month = {May}, pages = {627-629}, abstract = {

We have performed saturation spectroscopy measurements of the lowest intersubband transition in a single 400 angstrom GaAs/Al0.3Ga0.7As modulation-doped square quantum well. We couple intense tunable far-infrared radiation from the Santa Barbara free electron laser into our sample using an edge-coupling technique and measure absorption as a function of frequency and intensity. Saturation and frequency shifts in the absorption line are clearly observed. We attribute the frequency shifts to reductions in the many-body depolarization shift. From our preliminary measurements, we estimate the intersubband relaxation time to be 600 ps to within a factor of three.

}, isbn = {0268-1242}, doi = {10.1088/0268-1242/9/5S/061}, author = {Craig, K. and Felix, C. L. and Heyman, J. N. and Markelz, A. G. and Sherwin, M. S. and Campman, K. L. and Hopkins, P. F. and Gossard, A. C.} } @article {269, title = {GIANT 3RD-ORDER NONLINEAR SUSCEPTIBILITIES FOR INPLANE FAR-INFRARED EXCITATION OF SINGLE INAS QUANTUM-WELLS}, journal = {Solid-State Electronics}, volume = {37}, number = {4-6}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
6th International Conference on Modulated Semiconductor Structures
Aug 23-27, 1993
Garmisch partenkir, germany
Tech univ munchen, walter schottky inst
9}, month = {Apr-Jun}, pages = {1243-1245}, abstract = {

Third-order, free-carrier nonlinear susceptibilities, chi(3), have been measured between 19 and 23 cm-1 for three InAs/AlSb quantum wells with sheet densities between 2.5 x 10(12) cm-2 and 8 x 10(12) cm-2. We find that these wells are strongly nonlinear at far-infrared frequencies: odd harmonics ninth order have been observed at high incident intensities, and the peak value of chi(3) reaches approximately 1 esu. This is several orders of magnitude larger than previously reported values for chi(3) in bulk n-GaAs (10(-4) esu)[1] and in polyacetylene (10(-7) esu)[2]. The large magnitude of chi(3) is attributed to the high carrier density in the InAs wells, and to the strong non-parabolicity of the conduction band in InAs. However, the free-carrier chi(3) for bulk InAs predicts a density-dependence different from that observed, and the measured decrease in chi(3) with increasing intensity indicates non-perturbative response. We find that the anisotropy of chi(3) displays the expected 4-fold symmetry.

}, isbn = {0038-1101}, doi = {10.1016/0038-1101(94)90399-9}, author = {Markelz, A. G. and Gwinn, E. G. and Sherwin, M. S. and Nguyen, C. and Kroemer, H.} } @article {257, title = {PROBING TERAHERTZ DYNAMICS IN SEMICONDUCTOR NANOSTRUCTURES WITH UCSB FREE-ELECTRON LASERS}, journal = {Journal of Luminescence}, volume = {60-1}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017; Guimaraes, Paulo Sergio Soares/B-6918-2012
Sherwin, Mark S/0000-0002-3869-1893; Guimaraes, Paulo Sergio Soares/0000-0002-0113-2641; Markelz, Andrea/0000-0003-0443-4319
1993 International Conference on Luminescence (ICL 93)
Aug 09-13, 1993
Univ connecticut, storrs, ct
Univ connecticut; opt soc amer; amer phys soc; ieee, laser \& electro opt soc; int union pure \& appl phys; int sci fdn; univ connecticut res fdn
3}, month = {Apr}, pages = {250-255}, abstract = {

The UCSB free-electron lasers provide kilowatts of continuously tunable radiation from 120 GHz to 4.8 THz. They have the most impact on terahertz science and technology that require a tunable, high power source to explore non-linear dynamics or that sacrifice incident power to recover the linear response of systems with very small cross-section. We describe three experiments that demonstrate the utility of these lasers in experiments on the terahertz dynamics of semiconductor nanostructures: (i) terahertz dynamics of resonant tunneling diodes, (ii) saturation spectroscopy of quantum wells and (iii) photon-assisted tunneling in superlattices.

}, isbn = {0022-2313}, doi = {10.1016/0022-2313(94)90142-2}, author = {Allen, S. J. and Craig, K. and Felix, C. L. and Guimaraes, P. and Heyman, J. N. and Kaminski, J. P. and Keay, B. J. and Markelz, A. G. and Ramian, G. and Scott, J. S. and Sherwin, M. S. and Campman, K. L. and Hopkins, P. F. and Gossard, A. C. and Chow, D. and Lui, M. and Liu, T. Y.} } @article {267, title = {SUBCUBIC POWER DEPENDENCE OF 3RD-HARMONIC GENERATION FOR INPLANE, FAR-INFRARED EXCITATION OF INAS QUANTUM-WELLS}, journal = {Semiconductor Science and Technology}, volume = {9}, number = {5}, year = {1994}, note = {Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
S
8th International Conference on Hot Carriers in Semiconductors
Aug 16-20, 1993
Oxford univ, oxford, england
Sci \& engn res council; royal soc; brit council; oxford univ
4}, month = {May}, pages = {634-637}, abstract = {

Large third-order, free-carrier nonlinear susceptibilities, chi(3) (to approximately 0.2 esu), and subcubic dependence of the third-harmonic power on the incident intensity, have been observed between 19 cm-1 and 23 cm-1 for InAs/AlSb quantum wells with electron sheet densities between 2.5 x 10(12) cm-2 and 8 X 10(12) cm-2. We find that the transmission of the fundamental, and the samples{\textquoteright} DC conductivity, decrease with increasing incident intensity, indicating a large rise in the scattering rate. Using the intensity-dependent transmission to account for absorption in the sample is not sufficient to recover a cubic power law for the third-harmonic intensity. In addition, given the increased scattering rate indicated by the conductivity data, the bulk free-carrier chi(3) due to non-parabolicity should decrease dramatically with increasing fundamental intensity, contrary to our results. Thus, non-parabolicity alone cannot account for the observed third-harmonic response.

}, isbn = {0268-1242}, doi = {https://doi.org/10.1088/0268-1242/9/5S/063}, author = {Markelz, A. G. and Asmar, N. G. and Gwinn, E. G. and Sherwin, M. S. and Nguyen, C. and Kroemer, H.} } @proceedings {320, title = {Far-infrared nonlinear response of electrons in semiconductor nanostructures}, volume = {1854}, year = {1993}, pages = {36-47}, author = {Sherwin, M. S. and Asmar, N. G. and Bewley, W. W. and Craig, K. and Felix, C. L. and Galdrikian, B. and Gwinn, E. G. and Markelz, A.G. and Gossard, A. C. and Hopkins, P. F. and Sundaram, M. and Birnir, B.} } @article {281, title = {8 NEW HIGH-TEMPERATURE SUPERCONDUCTORS WITH THE 1-2-4 STRUCTURE}, journal = {Physical Review B}, volume = {39}, number = {10}, year = {1989}, note = {Scheven, Ulrich/D-7582-2013
Markelz, Andrea/0000-0003-0443-4319; Scheven, Ulrich/0000-0001-8111-0081
B
241}, month = {Apr 1}, pages = {7347-7350}, isbn = {0163-1829}, doi = {10.1103/physrevb.39.7347 }, author = {Morris, D. E. and Nickel, J. H. and Wei, J. Y. T. and Asmar, N. G. and Scott, J. S. and Scheven, U. M. and Hultgren, C. T. and Markelz, A. G. and Post, J. E. and Heaney, P. J. and Veblen, D. R. and Hazen, R. M.} }