@article {247, title = {Increase in Dynamical Collectivity and Directionality of Orange Carotenoid Protein in the Photo-Protective State}, journal = {Biophysical Journal}, volume = {114}, number = {3}, year = {2018}, note = {ISI Document Delivery No.: GD5RB
Times Cited: 1
Cited Reference Count: 0
Deng, Yanting Luck, Catherine H. Romo, Tod D. Grossfield, Alan M. Bandara, Sepalika Ren, Zhong Yang, Xiaojing Markelz, Andrea G.
62nd Annual Meeting of the Biophysical-Society
Feb 17-21, 2018
San Francisco, CA
Biophys Soc
1

7
Cell press
Cambridge
1542-0086}, month = {Feb}, pages = {522A-522A}, type = {Meeting Abstract}, keywords = {Biophysics}, isbn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2854}, author = {Deng, Y. T. and Luck, C. H. and Romo, T. D. and Grossfield, A. M. and Bandara, S. and Ren, Z. and Yang, X. J. and Markelz, A. G.} } @article {274, title = {Hydration Effects on Energy Relaxation of Ferric Cytochrome C Films after Soret-Band Photoexcitation}, journal = {Journal of Physical Chemistry B}, volume = {114}, number = {46}, year = {2010}, note = {ISI Document Delivery No.: 681CT
Times Cited: 3
Cited Reference Count: 87
Cited References:
Bagchi B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+
BAI YW, 1995, SCIENCE, V269, P192, DOI 10.1126/science.7618079
Bertini I, 2000, J MAGN RESON, V147, P1, DOI 10.1006/jmre.2000.2131
Bizzarri AR, 2002, J PHYS CHEM B, V106, P6617, DOI 10.1021/jp020100m
BONE S, 1985, J MOL BIOL, V181, P323, DOI 10.1016/0022-2836(85)90096-8
Bone S, 2008, J PHYS CHEM B, V112, P10071, DOI 10.1021/jp8009782
BULL HB, 1968, ARCH BIOCHEM BIOPHYS, V128, P488, DOI 10.1016/0003-9861(68)90055-6
BULL HB, 1970, ARCH BIOCHEM BIOPHYS, V137, P299, DOI 10.1016/0003-9861(70)90443-1
CHAMPION PM, 1981, J CHEM PHYS, V75, P490, DOI 10.1063/1.441846
Chen EF, 1999, J AM CHEM SOC, V121, P3811, DOI 10.1021/ja983169+
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Cianetti S, 2004, J AM CHEM SOC, V126, P13932, DOI 10.1021/ja046442i
Dragomir I, 2007, BIOPHYS J, V92, P989, DOI 10.1529/biophysj.106.095976
Eaton W A, 1981, Methods Enzymol, V76, P175
EATON WA, 1967, J CHEM PHYS, V46, P2533, DOI 10.1063/1.1841081
EATON WA, 1968, J CHEM PHYS, V49, P985, DOI 10.1063/1.1670263
Ehrler OT, 2009, ACCOUNTS CHEM RES, V42, P769, DOI 10.1021/ar800263z
FERRAND M, 1993, P NATL ACAD SCI USA, V90, P9668, DOI 10.1073/pnas.90.20.9668
GASCOYNE PRC, 1977, J CHEM SOC FARAD T 1, V73, P171, DOI 10.1039/f19777300171
GIBSON QH, 1957, NATURE, V180, P1416, DOI 10.1038/1801416b0
Gregory R.B., 1995, PROTEIN SOLVENT INTE
HALLE B, 1981, J AM CHEM SOC, V103, P500, DOI 10.1021/ja00393a004
Halle B, 2004, PHILOS T R SOC B, V359, P1207, DOI 10.1098/rstb.2004.1499
Henchman RH, 2002, PROTEIN SCI, V11, P2080, DOI 10.1110/ps.0214002
Hertel IV, 2006, REP PROG PHYS, V69, P1897, DOI 10.1088/0034-4885/69/6/R06
Jayaram B, 2004, ANNU REV BIOPH BIOM, V33, P343, DOI 10.1146/annurev.biophys.33.110502.140414
Jimenez R, 2002, J PHYS CHEM B, V106, P9172, DOI 10.1021/jp0209648
JONES CM, 1993, P NATL ACAD SCI USA, V90, P11860, DOI 10.1073/pnas.90.24.11860
Joti Y, 2008, BIOPHYS J, V94, P4435, DOI 10.1529/biophysj.107.118042
Jougeward K. A., 1988, J BIOL CHEM, V263, P6027
Kamal JKA, 2004, P NATL ACAD SCI USA, V101, P13411, DOI 10.1073/pnas.0405724101
Kamei T, 2002, BIOPHYS J, V82, P418, DOI 10.1016/S0006-3495(02)75406-4
Kholodenko Y, 2000, CHEM PHYS, V259, P71, DOI 10.1016/S0301-0104(00)00182-8
Kubinec M. G., 1992, CURR OPIN STRUC BIOL, V2, P828
Kumar ATN, 2001, J PHYS CHEM B, V105, P7847, DOI 10.1021/jp0101209
Levy Y, 2004, P NATL ACAD SCI USA, V101, P3325, DOI 10.1073/pnas.0400157101
Levy Y, 2006, ANNU REV BIOPH BIOM, V35, P389, DOI 10.1146/annurev.biophys.35.040405.102134
LI P, 1992, J CHEM PHYS, V97, P3214, DOI 10.1063/1.463008
Lim MH, 1996, J PHYS CHEM-US, V100, P12043, DOI 10.1021/jp9536458
Lowenich D, 2008, PHOTOCHEM PHOTOBIOL, V84, P193, DOI 10.1111/j.1751-1097.2007.00219.x
Makinen M. W., 1983, IRON PORPHYRINS, P41
Manas ES, 1999, J PHYS CHEM B, V103, P6334, DOI 10.1021/jp9908552
MARGOLIASH E., 1966, ADVANCE PROTEIN CHEM, V21, P113, DOI 10.1016/S0065-3233(08)60128-X
MARTIN JL, 1994, METHOD ENZYMOL, V232, P416
MARTIN JL, 1992, ANNU REV BIOPH BIOM, V21, P199, DOI 10.1146/annurev.biophys.21.1.199
MARTIN JL, 1983, P NATL ACAD SCI-BIOL, V80, P173, DOI 10.1073/pnas.80.1.173
Mitra RK, 2007, LANGMUIR, V23, P10224, DOI 10.1021/la7014447
MOORE GR, 1990, CYTOCHROMES EVOLUTIO
Negrerie M, 2006, J PHYS CHEM B, V110, P12766, DOI 10.1021/jp0559377
Nibbering ETJ, 2005, ANNU REV PHYS CHEM, V56, P337, DOI 10.1146/annurev.physchem.56.092503.141314
Oleinikova A, 2007, BIOPHYS J, V93, P2986, DOI 10.1529/biophysj.107.108753
OTTING G, 1989, J AM CHEM SOC, V111, P1871, DOI 10.1021/ja00187a050
Pal SK, 2004, CHEM REV, V104, P2099, DOI 10.1021/cr020689l
Pascher T, 1996, SCIENCE, V271, P1558, DOI 10.1126/science.271.5255.1558
Qiu WH, 2006, P NATL ACAD SCI USA, V103, P13979, DOI 10.1073/pnas.0606235103
Qiu WH, 2005, J PHYS CHEM B, V109, P16901, DOI 10.1021/jp0511754
Raschke TM, 2006, CURR OPIN STRUC BIOL, V16, P152, DOI 10.1016/j.sbi.2006.03.002
Reddy CK, 2001, J MOL BIOL, V314, P619, DOI 10.1006/jmbi.2001.5154
RODRIGUEZ J, 1991, J CHEM PHYS, V94, P6020, DOI 10.1063/1.460439
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
SCHEJTER A, 1964, BIOCHEMISTRY-US, V3, P1045, DOI 10.1021/bi00896a006
SCHEJTER A, 1984, BIOCHEMISTRY-US, V23, P1081, DOI 10.1021/bi00301a007
SHECHTER E, 1967, BIOPOLYMERS, V5, P788, DOI 10.1002/bip.1967.360050812
Smith JC, 2002, J MOL LIQ, V101, P27, DOI 10.1016/S0167-7322(02)00100-9
Stolow A, 2004, CHEM REV, V104, P1719, DOI 10.1021/cr020683w
Stolow A, 2003, ANNU REV PHYS CHEM, V54, P89, DOI 10.1146/annurev.physchem.54.011002.103809
SUBRAMANIAN S, 1972, BIOPOLYMERS, V11, P1305, DOI 10.1002/bip.1972.360110614
SUTHERLAND JC, 1972, J CHEM PHYS, V57, P76, DOI 10.1063/1.1678020
TAKANO T, 1981, J MOL BIOL, V153, P95, DOI 10.1016/0022-2836(81)90529-5
TAKANO T, 1981, J MOL BIOL, V153, P79, DOI 10.1016/0022-2836(81)90528-3
TALER G, 1995, BIOCHEMISTRY-US, V34, P14209, DOI 10.1021/bi00043a027
TEETER MM, 1991, ANNU REV BIOPHYS BIO, V20, P577, DOI 10.1146/annurev.biophys.20.1.577
Vos MH, 1999, BBA-BIOENERGETICS, V1411, P1, DOI 10.1016/S0005-2728(99)00035-3
Wang W, 2000, J PHYS CHEM B, V104, P10789, DOI 10.1021/jp0008602
WEI YZ, 1994, J PHYS CHEM-US, V98, P6644, DOI 10.1021/j100077a034
Werner JH, 2006, P NATL ACAD SCI USA, V103, P11130, DOI 10.1073/pnas.0604712103
Wilson M. T, 1996, CYTOCHROME C MULTIDI, P611
Ye MP, 2007, BIOPHYS J, V93, P2756, DOI 10.1529/biophysj.107.106799
Ye S, 2007, AIP CONF PROC, V893, P1307, DOI 10.1063/1.2730382
Ye X, 2002, J AM CHEM SOC, V124, P5914, DOI 10.1021/ja017359n
Ye XO, 2003, J PHYS CHEM A, V107, P8156, DOI 10.1021/jp0276799
Yeh SR, 1998, ACCOUNTS CHEM RES, V31, P727, DOI 10.1021/ar970084p
Yokoyama K, 2001, J PHYS CHEM B, V105, P12622, DOI 10.1021/jp011217y
Zang C, 2009, J AM CHEM SOC, V131, P2846, DOI 10.1021/ja8057293
Zelent B, 2004, J PHYS CHEM B, V108, P10317, DOI 10.1021/jp037664q
Zhang LY, 2007, P NATL ACAD SCI USA, V104, P18461, DOI 10.1073/pnas.0707647104
Zhou HX, 2001, BIOPHYS CHEM, V93, P171, DOI 10.1016/S0301-4622(01)00219-8
Ye, Shuji Markelz, Andrea
Ye, Shuji/B-4479-2010
Markelz, Andrea/0000-0003-0443-4319
NSFNational Science Foundation (NSF) [PHY-0349256, DBI-2959989]; University of Science and Technology of China; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21073175]; National Basic Research Program of ChinaNational Basic Research Program of China [2010CB923300]
This work was supported by NSF CAREER Grant PHY-0349256 and NSF MRI-R2 Grant DBI-2959989, the start-up funding from University of Science and Technology of China, the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (Grant 21073175), and National Basic Research Program of China (Grant 2010CB923300).
3
2
20
Amer chemical soc
Washington}, month = {Nov}, pages = {15151-15157}, type = {Article}, abstract = {

Protein hydration plays a critical role in protein dynamics and biological processes. Pump-probe transmission measurement has been applied to investigate the hydration effects on the energy relaxation of a heme protein ferric Cytochrome c (Cyt c) film after soret-band photoexcitation. Transient dynamics study indicates that the energy internal conversion time of similar to 300 fs is independent of hydration. The vibrationally excited electronic ground-state recovery rates show two transitions at the hydration level of h = 12.4-16.5\% and 21.7-23.5\%. The first transition occurs at the hydration level for the onset of an increasing ferric Cyt c flexibility while the second transition occurs at the saturated hydration level. The hydration dependence of steady-state electronic absorption spectrum results shows that the Q-band peak is nearly constant in center wavelength, but the line width surprisingly narrows with increasing hydration. For the similar to 695 nm absorbance associated with the MET80-Fe bond, the intensity increases with increasing hydration and slightly blue shifts. The 695 nm peak grows rapidly at h = 12.4\% and then plateaus at h = 21.7\%. This research shows that similar to 695 nm absorbance and ground-state recovery rates are sensitive to the hydration of the protein. This study will aid in understanding how hydration modulates the activity of the protein dynamics at a local level.

}, keywords = {Chemistry, circular-dichroism, conformation change, dynamics, ferricytochrome-c, protein hydration, resolved resonance raman, spectroscopy, unfolded states, vibrational-relaxation, water-molecules}, isbn = {1520-6106}, doi = {10.1021/jp104217j}, author = {Ye, S. J. and Markelz, A.} } @inbook {303, title = {Development of Tagless Biosensors for Detecting the Presence of Pathogens}, booktitle = {Terahertz Frequency Detection and Identification of Materials and Objects}, volume = {ed X.-C. Zhang, R. E. Miles, H. Eisele and A. Krotkus}, year = {2007}, pages = {123-134}, publisher = {Springer}, organization = {Springer}, chapter = {9}, address = {Dordrecht, The Netherlands}, author = {Markelz, A. G. and Chen, J.-Y. and Knab, J. R. and He, Y. and Ye, S.} } @article {223, title = {Terahertz dielectric assay of solution phase protein binding}, journal = {Applied Physics Letters}, volume = {90}, number = {24}, year = {2007}, note = {ISI Document Delivery No.: 179QR
Times Cited: 51
Cited Reference Count: 9
Cited References:
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Brucherseifer M, 2000, APPL PHYS LETT, V77, P4049, DOI 10.1063/1.1332415
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Fear G, 2007, PHARMACOL THERAPEUT, V113, P354, DOI 10.1016/j.pharmthera.2006.09.001
Heugen U, 2006, P NATL ACAD SCI USA, V103, P12301, DOI 10.1073/pnas.0604897103
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
LEHRER SS, 1967, J BIOL CHEM, V242, P4644
Menikh A, 2004, BIOSENS BIOELECTRON, V20, P658, DOI 10.1016/j.bios.2004.03.006
Xu J, 2006, PROTEIN SCI, V15, P1175, DOI 10.1110/ps.062073506
Chen, Jing-Yin Knab, J. R. Ye, Shuji He, Yunfen Markelz, A. G.
Ye, Shuji/B-4479-2010
Markelz, Andrea/0000-0003-0443-4319
53
1
42
Amer inst physics
Melville
1077-3118}, month = {Jun}, pages = {3}, type = {Article}, abstract = {

The authors demonstrate a method for rapid determination of protein-ligand binding on solution phase samples using terahertz dielectric spectroscopy. Measurements were performed using terahertz time domain spectroscopy on aqueous solutions below the liquid-solid transition for water. Small ligand binding sensitivity was demonstrated using triacetylglucosamine and hen egg white lysozyme with a decrease in dielectric response with binding. The magnitude of the change increases with frequency. (c) 2007 American Institute of Physics.

}, keywords = {dynamics, lysozyme, Physics, spectroscopy, water}, isbn = {0003-6951}, doi = {10.1063/1.2748852}, author = {Chen, J. Y. and Knab, J. R. and Ye, S. J. and He, Y. F. and Markelz, A. G.} } @proceedings {192, title = {Protein conformational dynamics measured with terahertz time domain spectroscopy}, year = {2006}, pages = {183-183}, publisher = {IEEE}, isbn = {1424403995}, doi = {https://doi.org/10.1088/0031-9155/47/21/318}, author = {Knab, Joseph R and Chen, Jing-Yin and Ye, Shuji and He, Yunfen and Markelz, Andrea G} } @article {229, title = {Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems}, journal = {Applied Physics Letters}, volume = {89}, number = {13}, year = {2006}, note = {ISI Document Delivery No.: 089JE
Times Cited: 18
Cited Reference Count: 16
Cited References:
ANDO T, 1982, REV MOD PHYS, V54, P437, DOI 10.1103/RevModPhys.54.437
ANDO T, 1989, HIGH MAGNETIC FIELDS, V2, P164
Ashcroft NW, 1976, SOLID STATE PHYS, P1
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Cerne J, 2000, PHYS REV B, V61, P8133, DOI 10.1103/PhysRevB.61.8133
COLERIDGE PT, 1991, PHYS REV B, V44, P3793, DOI 10.1103/PhysRevB.44.3793
Dorozhkin PS, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2035883
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Kukushkin IV, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1856143
MADELUNG O, 1996, SEMICONDUCTORS BASIC, P109
MCKNIGHT SW, 1987, INFRARED PHYS, V27, P327, DOI 10.1016/0020-0891(87)90074-1
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Sadofyev YG, 2002, APPL PHYS LETT, V81, P1833, DOI 10.1063/1.1504882
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
ZAWADZKI W, 1974, ADV PHYS, V23, P435, DOI 10.1080/00018737400101371
Kabir, N. A. Yoon, Y. Knab, J. R. Chen, J. -Y. Markelz, A. G. Reno, J. L. Sadofyev, Y. Johnson, S. Zhang, Y. -H. Bird, J. P.
Bird, Jonathan P/G-4068-2010
Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
18

15
Amer inst physics
Melville}, month = {Sep}, pages = {3}, type = {Article}, abstract = {

Frequency-dependent complex conductivity of high-mobility GaAs and InAs two-dimensional-electron-gas (2DEG) systems is studied by terahertz time domain spectroscopy. Determining the momentum relaxation time from a Drude model, the authors find a lower value than that from dc measurements, particularly at high frequencies/low temperatures. These deviations are consistent with the ratio tau(t)/tau(q,) where tau(q) is the full scattering time. This suggests that small-angle scattering leads to weaker heating of 2DEGs at low temperatures than expected from dc mobilit9y. (c) 2006 American Institute of Physics.

}, keywords = {field-effect transistors, photoconductivity, Physics, plasma-waves, radiation, resonant detection, subterahertz}, isbn = {0003-6951}, doi = {10.1063/1.2357605}, author = {Kabir, N. A. and Yoon, Y. and Knab, J. R. and Chen, J. Y. and Markelz, A. G. and Reno, J. L. and Sadofyev, Y. and Johnson, S. and Zhang, Y. H. and Bird, J. P.} } @proceedings {308, title = {Ultrafast Carriers Dynamics in GaSb/Mn Random Alloys}, year = {2006}, address = {Vienna Austria}, doi = {10.1063/1.2730382}, author = {Ye, S. and Knab, J. and Chen, J.-Y. and Wang, S. and Cheon, M. and Luo, H. and Markelz, A. G.} } @proceedings {309, title = {Using terahertz spectroscopy as a protein binding assay}, volume = {Proc SPIE 6080,}, year = {2006}, month = {02/2006}, pages = {35-42}, address = { San Jose, California, United States}, abstract = {

The vibrational modes corresponding to protein tertiary structural motion lay in the far infrared or terahertz frequency range. These collective large scale motions depend on global structure and thus will necessarily be perturbed by ligand binding events. We discuss the use of terahertz dielectric spectroscopy to measure these vibrational modes and the sensitivity of the technique to changes in protein conformation, oxidation state and environment. A challenge of applying this sensitivity as a spectroscopic assay for ligand binding is the sensitivity of the technique to both bulk water and water bound to the protein. This sensitivity can entirely obscure the signal from the protein or protein-ligand complex itself, thus necessitating sophisticated sample preparation making the technique impractical for industrial applications. We discuss methods to overcome this background and demonstrate how terahertz spectroscopy can be used to quickly assay protein binding for proteomics and pharmaceutical research.

}, doi = {10.1117/12.664098}, author = {Chen, J.-Y. and Knab, J. R. and Ye, S. and He, Y. and Markelz, A. G.} }