@article {224, title = {The 2017 terahertz science and technology roadmap}, journal = {Journal of Physics D-Applied Physics}, volume = {50}, number = {4}, year = {2017}, note = {ISI Document Delivery No.: EI0HL
Times Cited: 541
Cited Reference Count: 209
Cited References:
Adam AJL, 2011, J INFRARED MILLIM TE, V32, P976, DOI 10.1007/s10762-011-9809-2
Ahmed SS, 2012, IEEE MICROW MAG, V13, P26, DOI 10.1109/MMM.2012.2205772
Alliance N., 2015, CISC VIS NETW IND GL, P1
[Anonymous], 2013, 178512012 IEEE
[Anonymous], 2014, IEEE T ELECT DEVICES, V61
[Anonymous], 2012, 178522016 IEEE
[Anonymous], 2015, P17852 IEEE
Appleby R, 2015, P SOC PHOTO-OPT INS, V9462
Arnone DD, 1999, PROC SPIE, V3828, P209, DOI 10.1117/12.361037
Ashworth PC, 2009, OPT EXPRESS, V17, P12444, DOI 10.1364/OE.17.012444
AUSTON DH, 1988, IEEE J QUANTUM ELECT, V24, P184, DOI 10.1109/3.114
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
Barker RJ., 2005, MODERN MICROWAVE MIL
Basov DN, 2011, REV MOD PHYS, V83, P471, DOI 10.1103/RevModPhys.83.471
Bauwens M. F., 2014, P IEEEMTT S INT MICR, P1, DOI [10.1109/MWSYM.2014.68486 07, DOI 10.1109/MWSYM.2014.6848607]
Beard MC, 2002, NANO LETT, V2, P983, DOI 10.1021/nl0256210
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Bechtel HA, 2014, P NATL ACAD SCI USA, V111, P7191, DOI 10.1073/pnas.1400502111
Belkin MA, 2008, OPT EXPRESS, V16, P3242, DOI 10.1364/OE.16.003242
Belkin MA, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/11/118002
Bell R., 2012, INTRO FOURIER TRANSF
Berry CW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2638
Blanchard F, 2011, OPT EXPRESS, V19, P8277, DOI 10.1364/OE.19.008277
Blau J, 2013, P FREE EL LAS FEL 20, P486
Booske JH, 2011, IEEE T THZ SCI TECHN, V1, P54, DOI 10.1109/TTHZ.2011.2151610
Booske JH, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2838240
Boppel S, 2012, 2012 IEEE 12TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), P77, DOI 10.1109/SiRF.2012.6160142
Burghoff D, 2014, NAT PHOTONICS, V8, P462, DOI 10.1038/nphoton.2014.85
Busch SF, 2014, J INFRARED MILLIM TE, V35, P993, DOI 10.1007/s10762-014-0113-9
Byrne MB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3579258
Carr GL, 2002, NATURE, V420, P153, DOI 10.1038/nature01175
Carranza IE, 2015, IEEE T THZ SCI TECHN, V5, P892, DOI 10.1109/TTHZ.2015.2463673
Castro-Camus E, 2007, OPT EXPRESS, V15, P7047, DOI 10.1364/OE.15.007047
Chan WL, 2007, REP PROG PHYS, V70, P1325, DOI 10.1088/0034-4885/70/8/R02
Chattopadhyay G, 2011, IEEE T THZ SCI TECHN, V1, P33, DOI 10.1109/TTHZ.2011.2159561
Chen HT, 2003, APPL PHYS LETT, V83, P3009, DOI 10.1063/1.1616668
Chen JN, 2012, NATURE, V487, P77, DOI 10.1038/nature11254
Cocker T L, 2016, J PHYS D, V16, P1421
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
Coleman B, 2001, Issue Brief (Public Policy Inst (Am Assoc Retired Pers)), P1
Cooper KB, 2014, IEEE MICROW MAG, V15, P51, DOI 10.1109/MMM.2014.2356092
Cruz F C, 2007, C MICR OPT
Cunningham J, 2010, ELECTRON LETT, V46, pS34, DOI 10.1049/el.2010.3317
Dean P, 2011, OPT LETT, V36, P2587, DOI 10.1364/OL.36.002587
Dietz RJB, 2014, OPT LETT, V39, P6482, DOI 10.1364/OL.39.006482
Dietz RJB, 2014, OPT EXPRESS, V22, P19411, DOI 10.1364/OE.22.019411
Dobrovolsky V, 2007, SEMICOND SCI TECH, V22, P103, DOI 10.1088/0268-1242/22/2/017
Ducournau G, 2014, IEEE T THZ SCI TECHN, V4, P328, DOI 10.1109/TTHZ.2014.2309006
Dunsmore J.P., 2012, HDB MICROWAVE COMPON
Duvillaret L, 1999, APPL OPTICS, V38, P409, DOI 10.1364/AO.38.000409
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fathololoumi S, 2012, OPT EXPRESS, V20, P3866, DOI 10.1364/OE.20.003866
Fausti D, 2011, SCIENCE, V331, P189, DOI 10.1126/science.1197294
Federici J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3386413
Fei Z, 2012, NATURE, V487, P82, DOI 10.1038/nature11253
FETTERMAN HR, 1974, APPL PHYS LETT, V24, P70, DOI 10.1063/1.1655098
Freeman JR, 2013, OPT EXPRESS, V21, P16162, DOI 10.1364/OE.21.016162
Frisk U, 2003, ASTRON ASTROPHYS, V402, pL27, DOI 10.1051/0004-6361:20030335
Garet F, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890732
Gavrilov NG, 2007, NUCL INSTRUM METH A, V575, P54, DOI 10.1016/j.nima.2007.01.023
Gensch M., 2013, P 35 INT FREE EL LAS, P474
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giliberti V, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4819734
Grant J, 2013, LASER PHOTONICS REV, V7, P1043, DOI 10.1002/lpor.201300087
Green B, 2016, SCI REP-UK, V6, DOI 10.1038/srep22256
Griffith P.R., 2007, FOURIER TRANSFORM IN
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Gruene P, 2008, SCIENCE, V321, P674, DOI 10.1126/science.1161166
Han NR, 2014, OPT LETT, V39, P3480, DOI 10.1364/OL.39.003480
Han RN, 2013, IEEE J SOLID-ST CIRC, V48, P2296, DOI 10.1109/JSSC.2013.2269856
Hanham SM, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4927242
Hassel J, 2015, PROC SPIE, V9651, DOI 10.1117/12.2197522
Hauri CP, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3655331
He W, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4932099
Hebling J, 2002, OPT EXPRESS, V10, P1161, DOI 10.1364/OE.10.001161
Heinz E, 2015, J INFRARED MILLIM TE, V36, P879, DOI 10.1007/s10762-015-0170-8
Henry SC, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.9.091603
Hesler J L, 2006, P 7 INT S SPAC TER T, P215
Hintzsche H, 2012, CRIT REV ENV SCI TEC, V42, P2408, DOI 10.1080/10643389.2011.574206
Hishida M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.158102
Ho IC, 2010, OPT EXPRESS, V18, P2872, DOI 10.1364/OE.18.002872
HU BB, 1995, OPT LETT, V20, P1716, DOI 10.1364/OL.20.001716
Huang C, 2012, PHYS REV B, V85
Huber R, 2001, NATURE, V414, P286, DOI 10.1038/35104522
Jankowiak A., 2013, Synchrotron Radiation News, V26, P22, DOI 10.1080/08940886.2013.791212
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Jepsen PU, 2005, OPT LETT, V30, P29, DOI 10.1364/OL.30.000029
JUICE-Jupiter Icy Moons Explorer, 2014, SRE20141 JUICE EUR S, P1
Kallfass I, 2011, IEEE T THZ SCI TECHN, V1, P477, DOI 10.1109/TTHZ.2011.2160021
Kampfrath T, 2013, NAT PHOTONICS, V7, P680, DOI [10.1038/nphoton.2013.184, 10.1038/NPHOTON.2013.184]
Kan T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9422
Karpowicz N, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2828709
Kehr SC, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.256403
Kemp MC, 2011, IEEE T THZ SCI TECHN, V1, P282, DOI 10.1109/TTHZ.2011.2159647
Khalid A, 2014, J APPL PHYS, V115, DOI 10.1063/1.4868705
Kirley MP, 2015, IEEE T THZ SCI TECHN, V5, P1012, DOI 10.1109/TTHZ.2015.2468074
Kiwa T, 2003, OPT LETT, V28, P2058, DOI 10.1364/OL.28.002058
Koch M, 2001, NATO SCI SER II MATH, V27, P241
Koenig S, 2013, NAT PHOTONICS, V7, P977, DOI [10.1038/nphoton.2013.275, 10.1038/NPHOTON.2013.275]
Kohler R, 2002, NATURE, V417, P156, DOI 10.1038/417156a
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
Kosarev A, 2010, SOLID STATE ELECTRON, V54, P417, DOI 10.1016/j.sse.2009.12.032
Kundu I, 2014, OPT EXPRESS, V22, P16595, DOI 10.1364/OE.22.016595
Kuznetsov SA, 2010, KEY ENG MATER, V437, P276, DOI 10.4028/www.scientific.net/KEM.437.276
Langevin Y, 2005, PAYLOAD MISSION DEFI
LaRue JL, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.036103
Leitenstorfer A, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/045016
Leitner DM, 2006, INT REV PHYS CHEM, V25, P553, DOI 10.1080/01442350600862117
Li LH, 2014, ELECTRON LETT, V50, P309, DOI 10.1049/el.2013.4035
Liu L, 2010, IEEE MICROW WIREL CO, V20, P504, DOI 10.1109/LMWC.2010.2055553
Liu SC, 2016, OPT EXPRESS, V24, P2728, DOI 10.1364/OE.24.002728
Lu X H, 2008, P SOC PHOTO-OPT INS, V7277
Luukanen A, 2003, APPL PHYS LETT, V82, P3970, DOI 10.1063/1.1579562
Mann C, 2009, P SOC PHOTO-OPT INS, V7311, P3970
Mickan S, 2004, PROC SPIE, V5277, P54, DOI 10.1117/12.530386
Mineo M, 2010, IEEE T ELECTRON DEV, V57, P3169, DOI 10.1109/TED.2010.2071876
Mittleman DM, 1996, IEEE J SEL TOP QUANT, V2, P679, DOI 10.1109/2944.571768
Mittleman DM, 1999, APPL PHYS B-LASERS O, V68, P1085, DOI 10.1007/s003400050750
Moon K, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4733475
Muller AS, 2010, REV ACCEL SCI TECH, V3, P165, DOI 10.1142/S1793626810000427
Muller R, 2015, J INFRARED MILLIM TE, V36, P654, DOI 10.1007/s10762-015-0163-7
Naftaly M, 2015, TERAHERTZ METROLOGY, P1
Nagai M, 2015, OPT EXPRESS, V23, P4641, DOI 10.1364/OE.23.004641
Nagatsuma T, 2012, OPT EXPRESS, V21, P477
Nagel M, 2002, APPL PHYS LETT, V80, P154, DOI 10.1063/1.1428619
Navarro-Cia M, 2015, J INFRARED MILLIM TE, V36, P542, DOI 10.1007/s10762-015-0157-5
Nielsen K, 2009, OPT EXPRESS, V17, P8592, DOI 10.1364/OE.17.008592
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
Nordquist CD, 2011, IEEE J SEL TOP QUANT, V17, P130, DOI 10.1109/JSTQE.2010.2049095
Oh SJ, 2012, J INFRARED MILLIM TE, V33, P74, DOI 10.1007/s10762-011-9847-9
Ojefors E, 2009, IEEE J SOLID-ST CIRC, V44, P1968, DOI 10.1109/JSSC.2009.2021911
Ortolani M, 2008, PHYS REV LETT, V97
Ozerov M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.157205
Paoloni C, 2013, IEEE T ELECTRON DEV, V60, P1236, DOI 10.1109/TED.2013.2240686
Parrott EPJ, 2015, APPL SPECTROSC, V69, P1, DOI 10.1366/14-07707
Patrashin M, 2015, IEEE T ELECTRON DEV, V62, P1068, DOI 10.1109/TED.2015.2393358
Peiponen K. E., 2013, TERAHERTZ SPECTROSCO, V171
Peng K, 2015, NANO LETT, V15, P206, DOI 10.1021/nl5033843
Pickwell E, 2004, APPL PHYS LETT, V84, P2190, DOI 10.1063/1.1688448
Ponnampalam L, 2011, J LIGHTWAVE TECHNOL, V29, P2229, DOI 10.1109/JLT.2011.2158186
Pupeza I, 2007, OPT EXPRESS, V15, P4335, DOI 10.1364/OE.15.004335
Rauter P, 2015, LASER PHOTONICS REV, V9, P452, DOI 10.1002/lpor.201500095
Reid CB, 2011, PHYS MED BIOL, V56, P4333, DOI 10.1088/0031-9155/56/14/008
Reid J R, 2012, IEEE 12 TOP M SIL MO, P17
Rosch M, 2015, NAT PHOTONICS, V9, P42, DOI [10.1038/nphoton.2014.279, 10.1038/NPHOTON.2014.279]
Rudd JV, 2000, PROC SPIE, V3934, P27, DOI 10.1117/12.386344
Rymanov V, 2015, PHOTONICS, V2, DOI 10.3390/photonics2041152
SANTOS Daisy Conceicao, 2014, THESIS
Scherger B, 2011, APPL OPTICS, V50, P2256, DOI 10.1364/AO.50.002256
Schleicher JM, 2009, J APPL PHYS, V105, DOI 10.1063/1.3133093
Schumann S, 2012, OPT EXPRESS, V20, P19200, DOI 10.1364/OE.20.019200
Seeds AJ, 2015, J LIGHTWAVE TECHNOL, V33, P579, DOI 10.1109/JLT.2014.2355137
Sell A, 2008, OPT LETT, V33, P2767, DOI 10.1364/OL.33.002767
Shams H, 2015, IEEE PHOTONICS J, V7, DOI 10.1109/JPHOT.2015.2438437
Shams H, 2014, OPT EXPRESS, V22, P23465, DOI 10.1364/OE.22.023465
Shen YC, 2004, APPL PHYS LETT, V85, P164, DOI 10.1063/1.1768313
Simoens F., 2014, PHILOS T A, V372, P1
Simoens F, 2011, 36 INT C INFR MILL T, P1
Singh A, 2015, OPT EXPRESS, V23, P6656, DOI 10.1364/OE.23.006656
Sirtori C, 2013, NAT PHOTONICS, V7, P691, DOI [10.1038/NPHOTON.2013.208, 10.1038/nphoton.2013.208]
SMITH PR, 1988, IEEE J QUANTUM ELECT, V24, P255, DOI 10.1109/3.121
Son JH, 2013, NANOTECHNOLOGY, V24, DOI 10.1088/0957-4484/24/21/214001
Swinyard B, 2013, SPIE SENSORS SYSTEMS
Sy S, 2010, PHYS MED BIOL, V55, P7587, DOI 10.1088/0031-9155/55/24/013
Taylor ZD, 2015, IEEE T THZ SCI TECHN, V5, P184, DOI 10.1109/TTHZ.2015.2392628
Teppati V, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139567626
Tewari P, 2012, P SPIE, V8261
Thomas B., 2014, P 39 INT C INFR MILL, P1
Thumm M, 2014, KIT SCI REPORTS, V7693
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Truong BCQ, 2015, IEEE T BIO-MED ENG, V62, P699, DOI 10.1109/TBME.2014.2364025
Turcinkova D, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4916653
Turner GM, 2002, J PHYS CHEM B, V106, P11716, DOI 10.1021/jp025844e
van der Valk NCJ, 2002, APPL PHYS LETT, V81, P1558, DOI 10.1063/1.1503404
van Dijk F, 2014, IEEE PHOTONIC TECH L, V26, P965, DOI 10.1109/LPT.2014.2309353
Vicario C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.213901
Vinh NQ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4918708
Vitiello MS, 2012, NAT PHOTONICS, V6, P525, DOI 10.1038/nphoton.2012.145
Vitiello MS, 2015, OPT EXPRESS, V23, P5167, DOI 10.1364/OE.23.005167
Vitiello MS, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6884
Wade A, 2009, NAT PHOTONICS, V3, P41, DOI 10.1038/NPHOTON.2008.251
Wallace B., 2015, SPIE NEWSROOM, DOI [10.1117/2.1201503.005871, DOI 10.1117/2.1201503.005871]
Wallace VP, 2004, BRIT J DERMATOL, V151, P424, DOI 10.1111/j.1365-2133.2004.06129.x
Wang FH, 2015, OPTICA, V2, P944, DOI 10.1364/OPTICA.2.000944
Weightman P, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/053001
Wienold M, 2014, OPT EXPRESS, V22, P3334, DOI 10.1364/OE.22.003334
Wilk R, 2007, C LAS EL BALT MD
Williams BS, 2006, ELECTRON LETT, V42, P89, DOI 10.1049/el:20063921
Williams GP, 2006, REP PROG PHYS, V69, P301, DOI 10.1088/0034-4885/69/2/R01
Williams GP, 2008, NAT PHYS, V4, P356, DOI 10.1038/nphys958
Williams MRC, 2013, J PHYS CHEM B, V117, P10444, DOI 10.1021/jp406730a
Williams R, 2013, PHYS MED BIOL, V58, P373, DOI 10.1088/0031-9155/58/2/373
Withayachumnankul W, 2008, J OPT SOC AM B, V25, P1059, DOI 10.1364/JOSAB.25.001059
Woerner M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/025039
Woodward RM, 2003, J INVEST DERMATOL, V120, P72, DOI 10.1046/j.1523-1747.2003.12013.x
Wu X, OPT LETT, V39, P5403
Wu ZR, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790427
Xu J, 2003, PROC SPIE, V5268, P19, DOI 10.1117/12.518533
Yamashita M, 2011, OPT EXPRESS, V19, P10864, DOI 10.1364/OE.19.010864
Yan F, 2013, J INFRARED MILLIM TE, V34, P489, DOI 10.1007/s10762-013-0005-4
Yang SH, 2014, IEEE T THZ SCI TECHN, V4, P575, DOI 10.1109/TTHZ.2014.2342505
Yeh KL, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2734374
Zamora A, 2015, IEEE MTT S INT MICR
Zhao JF, 2011, IEEE T ELECTRON DEV, V58, P1221, DOI 10.1109/TED.2011.2109723
Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431]
Zhou Y, 2010, PROG ELECTROMAGN RES, V105, P71, DOI 10.2528/PIER10041806
Zibik EA, 2009, NAT MATER, V8, P803, DOI [10.1038/nmat2511, 10.1038/NMAT2511]
Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B.
Huggard, Peter/U-2150-2019; Konishi, Kuniaki/AAN-3624-2020; Zeitler, J. Axel/B-4885-2008; Paoloni, Claudio/AAH-9824-2019; Hoffmann, Matthias C./N-1082-2019; Wallace, Vincent P/A-9320-2012; Johnston, Michael/B-9813-2008; Castro-Camus, Enrique/V-6861-2019; Krozer, Viktor/P-5623-2014; Hoffmann, Matthias C/B-3893-2009; PAOLONI, CLAUDIO/AAA-3211-2020; Gonokami, Makoto/F-3641-2012; Shams, Haymen/H-3754-2012; Ridler, Nick/AAN-9637-2020; Huber, Rupert/N-4126-2018
Konishi, Kuniaki/0000-0003-2389-9787; Zeitler, J. Axel/0000-0002-4958-0582; Hoffmann, Matthias C./0000-0002-3596-9853; Wallace, Vincent P/0000-0003-3814-5400; Johnston, Michael/0000-0002-0301-8033; Krozer, Viktor/0000-0002-2387-1947; Hoffmann, Matthias C/0000-0002-3596-9853; PAOLONI, CLAUDIO/0000-0002-0265-0862; Shams, Haymen/0000-0002-5333-6478; Huber, Rupert/0000-0001-6617-9283; Davies, Alexander/0000-0002-1987-4846; Seeds, Alwyn/0000-0002-5228-627X; Castro-Camus, Enrique/0000-0002-8218-9155; Cunningham, John/0000-0002-1805-9743; Naftaly, Mira/0000-0002-0671-822X; Cumming, David/0000-0002-7838-8362
Engineering and Physical Sciences Research CouncilUK Research \& Innovation (UKRI)Engineering \& Physical Sciences Research Council (EPSRC) [EP/P015883/1, EP/M00306X/1, EP/K023349/1, EP/M017095/1, EP/L026597/1, EP/J017671/1] Funding Source: researchfish; Natural Environment Research CouncilUK Research \& Innovation (UKRI)NERC Natural Environment Research Council [NER/Z/S/2003/00642, NE/L012375/1, NER/Z/S/2000/01292] Funding Source: researchfish; Science and Technology Facilities CouncilUK Research \& Innovation (UKRI)Science \& Technology Facilities Council (STFC) [ST/P002056/1] Funding Source: researchfish; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Molecular and Cellular BioscienceNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1616529] Funding Source: National Science Foundation
566
30
462
Iop publishing ltd
Bristol
1361-6463}, month = {Feb}, pages = {49}, type = {Review}, abstract = {

Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to {\textquoteright}real world{\textquoteright} applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

}, keywords = {ex-vivo, generation, metal wave-guides, near-field, performance, photoconductive emitters, Physics, quantum-cascade lasers, radiation, semiconductors, Terahertz, thz, time-domain spectroscopy}, isbn = {0022-3727}, doi = {https://doi.org/10.1088/1361-6463/50/4/043001}, author = {Dhillon, S. S. and Vitiello, M. S. and Linfield, E. H. and Davies, A. G. and Hoffmann, M. C. and Booske, J. and Paoloni, C. and Gensch, M. and Weightman, P. and Williams, G. P. and Castro-Camus, E. and Cumming, D. R. S. and Simoens, F. and Escorcia-Carranza, I. and Grant, J. and Lucyszyn, S. and Kuwata-Gonokami, M. and Konishi, K. and Koch, M. and Schmuttenmaer, C. A. and Cocker, T. L. and Huber, R. and Markelz, A. G. and Taylor, Z. D. and Wallace, V. P. and Zeitler, J. A. and Sibik, J. and Korter, T. M. and Ellison, B. and Rea, S. and Goldsmith, P. and Cooper, K. B. and Appleby, R. and Pardo, D. and Huggard, P. G. and Krozer, V. and Shams, H. and Fice, M. and Renaud, C. and Seeds, A. and Stohr, A. and Naftaly, M. and Ridler, N. and Clarke, R. and Cunningham, J. E. and Johnston, M. B.} }