@article {238, title = {Linear dichroism infrared resonance in overdoped, underdoped, and optimally doped cuprate superconductors}, journal = {Physical Review B}, volume = {102}, number = {5}, year = {2020}, note = {ISI Document Delivery No.: NE5GO
Times Cited: 0
Cited Reference Count: 30
Cited References:
Acbas G, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.137201
Armitage NP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.035135
Arpaia R, 2018, PHY REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.024804
Basov DN, 2005, REV MOD PHYS, V77, P721, DOI 10.1103/RevModPhys.77.721
Blumberg G, 1996, PHYS REV B, V53, P11930, DOI 10.1103/PhysRevB.53.R11930
Cerne J, 2000, PHYS REV LETT, V84, P3418, DOI 10.1103/PhysRevLett.84.3418
Fauque B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.197001
Fridman I, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.104522
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Halperin B. I., 1991, SPRINGER P PHYS, V60, P439
Humlicek J, 2000, PHYS REV B, V61, P14554, DOI 10.1103/PhysRevB.61.14554
KOREN G, 1989, APPL PHYS LETT, V54, P1054, DOI 10.1063/1.101559
Koren G, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.174515
Lubashevsky Y, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.147001
Mukherjee A, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.085440
Nie LM, 2014, P NATL ACAD SCI USA, V111, P7980, DOI 10.1073/pnas.1406019111
Orenstein J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.067002
PISAREV RV, 1991, PHASE TRANSIT, V37, P63, DOI 10.1080/01411599108203448
Simon ME, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.247003
TROFIMOV IE, 1994, APPL PHYS LETT, V65, P2481, DOI 10.1063/1.112671
Varma CM, 2014, EPL-EUROPHYS LETT, V106, DOI 10.1209/0295-5075/106/27001
Varma CM, 1997, PHYS REV B, V55, P14554, DOI 10.1103/PhysRevB.55.14554
Wu J, 2017, NATURE, V547, P432, DOI 10.1038/nature23290
Xia J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.127002
Yakes MK, 2010, NANO LETT, V10, P1559, DOI 10.1021/nl9035302
Yakovenko VM, 2015, PHYSICA B, V460, P159, DOI 10.1016/j.physb.2014.11.060
Zhang H, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.033803
Zhang J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5235
Zhao L, 2017, NAT PHYS, V13, P250, DOI [10.1038/nphys3962, 10.1038/NPHYS3962]
Zhao L., 2018, ENCY MODERN OPTICS, P207
Mukherjee, A. Seo, J. Arik, M. M. Zhang, H. Zhang, C. C. Kirzhner, T. George, D. K. Markelz, A. G. Armitage, N. P. Koren, G. Wei, J. Y. T. Cerne, J.
NSF-DMR GrantNational Science Foundation (NSF) [1410599]; NSFNational Science Foundation (NSF) [MCB 1616529, DMR 1905519]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NSERCNatural Sciences and Engineering Research Council of Canada (NSERC); CFI-OITCanada Foundation for Innovation; Canadian Institute for Advanced ResearchCanadian Institute for Advanced Research (CIFAR)
We are indebted to D. Hsieh, S. A. Kivelson, C. M. Varma, and L. Zhao for helpful discussions. We gratefully acknowledge support from NSF-DMR Grant No. 1410599 (J.C.). A.G.M. and D.K.G. were supported by NSF Grant No. MCB 1616529 and DOE Grant No. DE-SC0016317. Work in Toronto was supported by NSERC, CFI-OIT, and the Canadian Institute for Advanced Research. J.Y.T.W. thanks Kejun Xu for laboratory assistance in Toronto. N.P.A. was supported by NSF Grant No. DMR 1905519.

9
Amer physical soc
College pk
2469-9969}, month = {Aug}, pages = {6}, type = {Article}, abstract = {

By measuring the polarization changes in terahertz, infrared, and visible radiation over an extended energy range (3-2330 meV), we observe symmetry breaking in cuprate high-temperature superconductors over wide energy, doping, and temperature ranges. We measure the polarization rotation (Re[theta(F)]) and ellipticity (Im[theta(F)]) of transmitted radiation through thin films as the sample is rotated. We observe a twofold rotational symmetry in theta(F), which is associated with linear dichroism (LD) and occurs when electromagnetic radiation polarized along one direction is absorbed more strongly than radiation polarized in the perpendicular direction. Such polarization anisotropies can be generally associated with symmetry breakings. We measure the amplitude of the LD signal and study its temperature, energy, and doping dependence. The LD signal shows a resonant behavior with a peak in the few hundred meV range, which is coincident with the midinfrared optical feature that has been associated with the formation of the pseudogap state. The strongest LD signal is found in underdoped films, although it is also observed in optimally and overdoped samples. The LD signal is consistent with an electronic nematic order which is decoupled from the crystallographic axes as well as novel magnetoelectric effects.

}, keywords = {Materials Science, Physics}, isbn = {2469-9950}, doi = {10.1103/PhysRevB.102.054520}, author = {Mukherjee, A. and Seo, J. and Arik, M. M. and Zhang, H. and Zhang, C. C. and Kirzhner, T. and George, D. K. and Markelz, A. G. and Armitage, N. P. and Koren, G. and Wei, J. Y. T. and Cerne, J.} } @article {222, title = {Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: Similarities and differences}, journal = {Biophysical Journal}, volume = {94}, number = {8}, year = {2008}, note = {ISI Document Delivery No.: 280IP
Times Cited: 50
Cited Reference Count: 72
Cited References:
Abdulaev NG, 1998, P NATL ACAD SCI USA, V95, P12854, DOI 10.1073/pnas.95.22.12854
Alexandrov V, 2005, PROTEIN SCI, V14, P633, DOI 10.1110/ps.04882105
Alexiev U, 2003, J MOL BIOL, V328, P705, DOI 10.1016/S0022-2836(03)00326-7
Altenbach C, 2001, BIOCHEMISTRY-US, V40, P15493, DOI 10.1021/bi011545o
AMADEI A, 1993, PROTEINS, V17, P412, DOI 10.1002/prot.340170408
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Beck M, 1998, BIOCHEMISTRY-US, V37, P7630, DOI 10.1021/bi9801560
Bizzarri AR, 2001, EUR BIOPHYS J BIOPHY, V30, P443, DOI 10.1007/s002490100167
BROOKS B, 1983, P NATL ACAD SCI-BIOL, V80, P6571, DOI 10.1073/pnas.80.21.6571
BROOKS BR, 1995, J COMPUT CHEM, V16, P1522, DOI 10.1002/jcc.540161209
Bu ZM, 2000, J MOL BIOL, V301, P525, DOI 10.1006/jmbi.2000.3978
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen Q, 2001, J OPT SOC AM B, V18, P823, DOI 10.1364/JOSAB.18.000823
Chung HS, 2005, P NATL ACAD SCI USA, V102, P612, DOI 10.1073/pnas.0408646102
Crozier PS, 2003, J MOL BIOL, V333, P493, DOI 10.1016/j.jmb.2003.08.045
Farrens DL, 1996, SCIENCE, V274, P768, DOI 10.1126/science.274.5288.768
Filippovich S. Y., 2004, PHOTOCHEM PHOTOBIOL, V3, P1
Fotiadis D, 2006, CURR OPIN STRUC BIOL, V16, P252, DOI 10.1016/j.sbi.2006.03.013
Gabel F, 2005, BIOPHYS J, V89, P3303, DOI 10.1529/biophysj.105.061028
Gabel F, 2002, Q REV BIOPHYS, V35, P327, DOI 10.1017/S0033583502003840
Getmanova E, 2004, BIOCHEMISTRY-US, V43, P1126, DOI 10.1021/bi030120u
Giraud G, 2003, BIOPHYS J, V85, P1903, DOI 10.1016/S0006-3495(03)74618-9
GRISCHKOWSKY D, 1991, FEMTOSECOND PULSES T
Groma GI, 2001, BIOPHYS J, V81, P3432, DOI 10.1016/S0006-3495(01)75975-9
Hendler RW, 2003, EUR J BIOCHEM, V270, P1920, DOI 10.1046/j.1432-1033.2003.03547.x
Hu KS, 2000, J PHOTOCH PHOTOBIO B, V58, P163, DOI 10.1016/S1011-1344(00)00125-1
Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5
ICHIYE T, 1991, PROTEINS, V11, P205, DOI 10.1002/prot.340110305
Jaaskelainen S, 1998, PROTEIN SCI, V7, P1359
Joti Y, 2004, PHYSICA B, V350, pE627, DOI 10.1016/j.physb.2004.03.167
Kamikubo H, 1997, BIOCHEMISTRY-US, V36, P12282, DOI 10.1021/bi9712302
Kataoka M, 2000, BBA-BIOENERGETICS, V1460, P166, DOI 10.1016/S0005-2728(00)00137-7
Keskin O, 2000, BIOPHYS J, V78, P2093, DOI 10.1016/S0006-3495(00)76756-7
Kim JE, 2003, BIOCHEMISTRY-US, V42, P5169, DOI 10.1021/bi030026d
Kim JE, 2002, J PHYS CHEM A, V106, P8508, DOI 10.1021/jp021069r
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
KONIG B, 1989, P NATL ACAD SCI USA, V86, P6878, DOI 10.1073/pnas.86.18.6878
Korter TM, 2006, CHEM PHYS LETT, V418, P65, DOI 10.1016/j.cplett.2005.10.097
Koutsopoulos S, 2005, PROTEINS, V61, P377, DOI 10.1002/prot.20606
Langen R, 1999, BIOCHEMISTRY-US, V38, P7918, DOI 10.1021/bi990010g
Lee AG, 2004, BBA-BIOMEMBRANES, V1666, P62, DOI 10.1016/j.bbamem.2004.05.012
Li J, 2004, J MOL BIOL, V343, P1409, DOI 10.1016/j.jmb.2004.08.090
Liang Y, 2003, J BIOL CHEM, V278, P21655, DOI 10.1074/jbc.M302536200
MacKerell AD, 2001, BIOPOLYMERS, V56, P257
Markelz A, 2002, PHYS MED BIOL, V47, P3797, DOI 10.1088/0031-9155/47/21/318
Markelz AG, 2000, CHEM PHYS LETT, V320, P42, DOI 10.1016/S0009-2614(00)00227-X
McCamant DW, 2005, J PHYS CHEM B, V109, P10449, DOI 10.1021/jp050095x
Niv MY, 2006, J COMPUT AID MOL DES, V20, P437, DOI 10.1007/s10822-006-9061-3
Oesterhelt D, 1974, Methods Enzymol, V31, P667
Okada T, 2001, CURR OPIN STRUC BIOL, V11, P420, DOI 10.1016/S0959-440X(00)00227-X
Pitman MC, 2005, J AM CHEM SOC, V127, P4576, DOI 10.1021/ja042715y
Rader AJ, 2004, P NATL ACAD SCI USA, V101, P7246, DOI 10.1073/pnas.0401429101
Ridge KD, 2003, TRENDS BIOCHEM SCI, V28, P479, DOI 10.1016/S0968-0004(03)00172-5
Ruprecht JJ, 2004, EMBO J, V23, P3609, DOI 10.1038/sj.emboj.7600374
Saam J, 2002, BIOPHYS J, V83, P3097, DOI 10.1016/S0006-3495(02)75314-9
Sass HJ, 2000, NATURE, V406, P649, DOI 10.1038/35020607
Schmuttenmaer CA, 2004, CHEM REV, V104, P1759, DOI 10.1021/cr020685g
Siegel PH, 2004, IEEE T MICROW THEORY, V52, P2438, DOI 10.1109/TMTT.2004.835916
Siegrist K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u
Subramaniam S, 2000, BBA-BIOENERGETICS, V1460, P157, DOI 10.1016/S0005-2728(00)00136-5
Tajkhorshid E, 2000, BIOPHYS J, V78, P683, DOI 10.1016/S0006-3495(00)76626-4
Tama F, 2000, PROTEINS, V41, P1
Tama F, 2002, J MOL BIOL, V321, P297, DOI 10.1016/S0022-2836(02)00627-7
Tama F, 2001, PROTEIN ENG, V14, P1, DOI 10.1093/protein/14.1.1
Teller DC, 2001, BIOCHEMISTRY-US, V40, P7761, DOI 10.1021/bi0155091
Thomas A, 1999, PROTEINS, V34, P96, DOI 10.1002/(SICI)1097-0134(19990101)34:1<96::AID-PROT8>3.0.CO;2-0
Ujj L, 1998, BIOPHYS J, V74, P1492, DOI 10.1016/S0006-3495(98)77861-0
Vogel R, 2004, J MOL BIOL, V338, P597, DOI 10.1016/j.jmb.2004.03.006
Vogel R, 2003, BIOPOLYMERS, V72, P133, DOI 10.1002/bip.10407
Whitmire SE, 2003, BIOPHYS J, V85, P1269, DOI 10.1016/S0006-3495(03)74562-7
Yan ECY, 2004, BIOCHEMISTRY-US, V43, P10867, DOI 10.1021/bi0400148
Zhang J, 2006, PROTEIN PEPTIDE LETT, V13, P33, DOI 10.2174/092986606774502027
Balu, R. Zhang, H. Zukowski, E. Chen, J. -Y. Markelz, A. G. Gregurick, S. K.
Zhang, Hailiang/F-8325-2010
Markelz, Andrea/0000-0003-0443-4319
52

27
Cell press
Cambridge
1542-0086}, month = {Apr}, pages = {3217-3226}, type = {Article}, abstract = {

We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins.

}, keywords = {Biophysics, bovine rhodopsin, conformational-changes, elastic, frequency normal-modes, light activation, molecular-dynamics simulation, neutron-scattering, protein-coupled receptors, transmembrane helices, vibrational-modes, wild-type}, isbn = {0006-3495}, doi = {10.1529/biophysj.107.105163}, author = {Balu, R. and Zhang, H. and Zukowski, E. and Chen, J. Y. and Markelz, A. G. and Gregurick, S. K.} }