TY - PAT T1 - Apparatus and method for analyzing a sample Y1 - 2021 A1 - Markelz, Andrea G A1 - Acbas, Gheorghe A1 - Niessen, Katherine A. AB -
An apparatus and method for Crystal Anisotropy Terahertz Microscopy (“CATM”) is provided. The apparatus includes an emitter configured to emit a THz pulse and a detector configured to detect the THz pulse after the pulse is transmitted through a sample disposed on a sample surface of the detector. A pulsed radiation generator generates a probe beam to interrogate the detector. The detector may include an electro-optical (“EO”) crystal configured to change in birefringence according to the THz pulse. The sample surface of the detector may have a dielectric coating which is transmissive to THz and reflective to the probe beam. The sample is disposed on the dielectric coating.
PB - USPTO CY - United States UR - https://patents.google.com/patent/US11125685B2/en ER - TY - JOUR T1 - Linear dichroism infrared resonance in overdoped, underdoped, and optimally doped cuprate superconductors JF - Physical Review B Y1 - 2020 A1 - Mukherjee, A. A1 - Seo, J. A1 - Arik, M. M. A1 - Zhang, H. A1 - Zhang, C. C. A1 - Kirzhner, T. A1 - George, D. K. A1 - Markelz, A. G. A1 - Armitage, N. P. A1 - Koren, G. A1 - Wei, J. Y. T. A1 - Cerne, J. KW - Materials Science KW - Physics AB -

By measuring the polarization changes in terahertz, infrared, and visible radiation over an extended energy range (3-2330 meV), we observe symmetry breaking in cuprate high-temperature superconductors over wide energy, doping, and temperature ranges. We measure the polarization rotation (Re[theta(F)]) and ellipticity (Im[theta(F)]) of transmitted radiation through thin films as the sample is rotated. We observe a twofold rotational symmetry in theta(F), which is associated with linear dichroism (LD) and occurs when electromagnetic radiation polarized along one direction is absorbed more strongly than radiation polarized in the perpendicular direction. Such polarization anisotropies can be generally associated with symmetry breakings. We measure the amplitude of the LD signal and study its temperature, energy, and doping dependence. The LD signal shows a resonant behavior with a peak in the few hundred meV range, which is coincident with the midinfrared optical feature that has been associated with the formation of the pseudogap state. The strongest LD signal is found in underdoped films, although it is also observed in optimally and overdoped samples. The LD signal is consistent with an electronic nematic order which is decoupled from the crystallographic axes as well as novel magnetoelectric effects.

VL - 102 SN - 2469-9950 N1 - ISI Document Delivery No.: NE5GO
Times Cited: 0
Cited Reference Count: 30
Cited References:
Acbas G, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.137201
Armitage NP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.035135
Arpaia R, 2018, PHY REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.024804
Basov DN, 2005, REV MOD PHYS, V77, P721, DOI 10.1103/RevModPhys.77.721
Blumberg G, 1996, PHYS REV B, V53, P11930, DOI 10.1103/PhysRevB.53.R11930
Cerne J, 2000, PHYS REV LETT, V84, P3418, DOI 10.1103/PhysRevLett.84.3418
Fauque B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.197001
Fridman I, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.104522
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Halperin B. I., 1991, SPRINGER P PHYS, V60, P439
Humlicek J, 2000, PHYS REV B, V61, P14554, DOI 10.1103/PhysRevB.61.14554
KOREN G, 1989, APPL PHYS LETT, V54, P1054, DOI 10.1063/1.101559
Koren G, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.174515
Lubashevsky Y, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.147001
Mukherjee A, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.085440
Nie LM, 2014, P NATL ACAD SCI USA, V111, P7980, DOI 10.1073/pnas.1406019111
Orenstein J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.067002
PISAREV RV, 1991, PHASE TRANSIT, V37, P63, DOI 10.1080/01411599108203448
Simon ME, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.247003
TROFIMOV IE, 1994, APPL PHYS LETT, V65, P2481, DOI 10.1063/1.112671
Varma CM, 2014, EPL-EUROPHYS LETT, V106, DOI 10.1209/0295-5075/106/27001
Varma CM, 1997, PHYS REV B, V55, P14554, DOI 10.1103/PhysRevB.55.14554
Wu J, 2017, NATURE, V547, P432, DOI 10.1038/nature23290
Xia J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.127002
Yakes MK, 2010, NANO LETT, V10, P1559, DOI 10.1021/nl9035302
Yakovenko VM, 2015, PHYSICA B, V460, P159, DOI 10.1016/j.physb.2014.11.060
Zhang H, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.033803
Zhang J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5235
Zhao L, 2017, NAT PHYS, V13, P250, DOI [10.1038/nphys3962, 10.1038/NPHYS3962]
Zhao L., 2018, ENCY MODERN OPTICS, P207
Mukherjee, A. Seo, J. Arik, M. M. Zhang, H. Zhang, C. C. Kirzhner, T. George, D. K. Markelz, A. G. Armitage, N. P. Koren, G. Wei, J. Y. T. Cerne, J.
NSF-DMR GrantNational Science Foundation (NSF) [1410599]; NSFNational Science Foundation (NSF) [MCB 1616529, DMR 1905519]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NSERCNatural Sciences and Engineering Research Council of Canada (NSERC); CFI-OITCanada Foundation for Innovation; Canadian Institute for Advanced ResearchCanadian Institute for Advanced Research (CIFAR)
We are indebted to D. Hsieh, S. A. Kivelson, C. M. Varma, and L. Zhao for helpful discussions. We gratefully acknowledge support from NSF-DMR Grant No. 1410599 (J.C.). A.G.M. and D.K.G. were supported by NSF Grant No. MCB 1616529 and DOE Grant No. DE-SC0016317. Work in Toronto was supported by NSERC, CFI-OIT, and the Canadian Institute for Advanced Research. J.Y.T.W. thanks Kejun Xu for laboratory assistance in Toronto. N.P.A. was supported by NSF Grant No. DMR 1905519.

9
Amer physical soc
College pk
2469-9969 ER - TY - JOUR T1 - The 2017 terahertz science and technology roadmap JF - Journal of Physics D-Applied Physics Y1 - 2017 A1 - Dhillon, S. S. A1 - Vitiello, M. S. A1 - Linfield, E. H. A1 - Davies, A. G. A1 - Hoffmann, M. C. A1 - Booske, J. A1 - Paoloni, C. A1 - Gensch, M. A1 - Weightman, P. A1 - Williams, G. P. A1 - Castro-Camus, E. A1 - Cumming, D. R. S. A1 - Simoens, F. A1 - Escorcia-Carranza, I. A1 - Grant, J. A1 - Lucyszyn, S. A1 - Kuwata-Gonokami, M. A1 - Konishi, K. A1 - Koch, M. A1 - Schmuttenmaer, C. A. A1 - Cocker, T. L. A1 - Huber, R. A1 - Markelz, A. G. A1 - Taylor, Z. D. A1 - Wallace, V. P. A1 - Zeitler, J. A. A1 - Sibik, J. A1 - Korter, T. M. A1 - Ellison, B. A1 - Rea, S. A1 - Goldsmith, P. A1 - Cooper, K. B. A1 - Appleby, R. A1 - Pardo, D. A1 - Huggard, P. G. A1 - Krozer, V. A1 - Shams, H. A1 - Fice, M. A1 - Renaud, C. A1 - Seeds, A. A1 - Stohr, A. A1 - Naftaly, M. A1 - Ridler, N. A1 - Clarke, R. A1 - Cunningham, J. E. A1 - Johnston, M. B. KW - ex-vivo KW - generation KW - metal wave-guides KW - near-field KW - performance KW - photoconductive emitters KW - Physics KW - quantum-cascade lasers KW - radiation KW - semiconductors KW - Terahertz KW - thz KW - time-domain spectroscopy AB -

Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

VL - 50 SN - 0022-3727 N1 - ISI Document Delivery No.: EI0HL
Times Cited: 541
Cited Reference Count: 209
Cited References:
Adam AJL, 2011, J INFRARED MILLIM TE, V32, P976, DOI 10.1007/s10762-011-9809-2
Ahmed SS, 2012, IEEE MICROW MAG, V13, P26, DOI 10.1109/MMM.2012.2205772
Alliance N., 2015, CISC VIS NETW IND GL, P1
[Anonymous], 2013, 178512012 IEEE
[Anonymous], 2014, IEEE T ELECT DEVICES, V61
[Anonymous], 2012, 178522016 IEEE
[Anonymous], 2015, P17852 IEEE
Appleby R, 2015, P SOC PHOTO-OPT INS, V9462
Arnone DD, 1999, PROC SPIE, V3828, P209, DOI 10.1117/12.361037
Ashworth PC, 2009, OPT EXPRESS, V17, P12444, DOI 10.1364/OE.17.012444
AUSTON DH, 1988, IEEE J QUANTUM ELECT, V24, P184, DOI 10.1109/3.114
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
Barker RJ., 2005, MODERN MICROWAVE MIL
Basov DN, 2011, REV MOD PHYS, V83, P471, DOI 10.1103/RevModPhys.83.471
Bauwens M. F., 2014, P IEEEMTT S INT MICR, P1, DOI [10.1109/MWSYM.2014.68486 07, DOI 10.1109/MWSYM.2014.6848607]
Beard MC, 2002, NANO LETT, V2, P983, DOI 10.1021/nl0256210
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Bechtel HA, 2014, P NATL ACAD SCI USA, V111, P7191, DOI 10.1073/pnas.1400502111
Belkin MA, 2008, OPT EXPRESS, V16, P3242, DOI 10.1364/OE.16.003242
Belkin MA, 2015, PHYS SCRIPTA, V90, DOI 10.1088/0031-8949/90/11/118002
Bell R., 2012, INTRO FOURIER TRANSF
Berry CW, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2638
Blanchard F, 2011, OPT EXPRESS, V19, P8277, DOI 10.1364/OE.19.008277
Blau J, 2013, P FREE EL LAS FEL 20, P486
Booske JH, 2011, IEEE T THZ SCI TECHN, V1, P54, DOI 10.1109/TTHZ.2011.2151610
Booske JH, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2838240
Boppel S, 2012, 2012 IEEE 12TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), P77, DOI 10.1109/SiRF.2012.6160142
Burghoff D, 2014, NAT PHOTONICS, V8, P462, DOI 10.1038/nphoton.2014.85
Busch SF, 2014, J INFRARED MILLIM TE, V35, P993, DOI 10.1007/s10762-014-0113-9
Byrne MB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3579258
Carr GL, 2002, NATURE, V420, P153, DOI 10.1038/nature01175
Carranza IE, 2015, IEEE T THZ SCI TECHN, V5, P892, DOI 10.1109/TTHZ.2015.2463673
Castro-Camus E, 2007, OPT EXPRESS, V15, P7047, DOI 10.1364/OE.15.007047
Chan WL, 2007, REP PROG PHYS, V70, P1325, DOI 10.1088/0034-4885/70/8/R02
Chattopadhyay G, 2011, IEEE T THZ SCI TECHN, V1, P33, DOI 10.1109/TTHZ.2011.2159561
Chen HT, 2003, APPL PHYS LETT, V83, P3009, DOI 10.1063/1.1616668
Chen JN, 2012, NATURE, V487, P77, DOI 10.1038/nature11254
Cocker T L, 2016, J PHYS D, V16, P1421
Cocker TL, 2013, NAT PHOTONICS, V7, P620, DOI [10.1038/NPHOTON.2013.151, 10.1038/nphoton.2013.151]
Coleman B, 2001, Issue Brief (Public Policy Inst (Am Assoc Retired Pers)), P1
Cooper KB, 2014, IEEE MICROW MAG, V15, P51, DOI 10.1109/MMM.2014.2356092
Cruz F C, 2007, C MICR OPT
Cunningham J, 2010, ELECTRON LETT, V46, pS34, DOI 10.1049/el.2010.3317
Dean P, 2011, OPT LETT, V36, P2587, DOI 10.1364/OL.36.002587
Dietz RJB, 2014, OPT LETT, V39, P6482, DOI 10.1364/OL.39.006482
Dietz RJB, 2014, OPT EXPRESS, V22, P19411, DOI 10.1364/OE.22.019411
Dobrovolsky V, 2007, SEMICOND SCI TECH, V22, P103, DOI 10.1088/0268-1242/22/2/017
Ducournau G, 2014, IEEE T THZ SCI TECHN, V4, P328, DOI 10.1109/TTHZ.2014.2309006
Dunsmore J.P., 2012, HDB MICROWAVE COMPON
Duvillaret L, 1999, APPL OPTICS, V38, P409, DOI 10.1364/AO.38.000409
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fathololoumi S, 2012, OPT EXPRESS, V20, P3866, DOI 10.1364/OE.20.003866
Fausti D, 2011, SCIENCE, V331, P189, DOI 10.1126/science.1197294
Federici J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3386413
Fei Z, 2012, NATURE, V487, P82, DOI 10.1038/nature11253
FETTERMAN HR, 1974, APPL PHYS LETT, V24, P70, DOI 10.1063/1.1655098
Freeman JR, 2013, OPT EXPRESS, V21, P16162, DOI 10.1364/OE.21.016162
Frisk U, 2003, ASTRON ASTROPHYS, V402, pL27, DOI 10.1051/0004-6361:20030335
Garet F, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4890732
Gavrilov NG, 2007, NUCL INSTRUM METH A, V575, P54, DOI 10.1016/j.nima.2007.01.023
Gensch M., 2013, P 35 INT FREE EL LAS, P474
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giliberti V, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4819734
Grant J, 2013, LASER PHOTONICS REV, V7, P1043, DOI 10.1002/lpor.201300087
Green B, 2016, SCI REP-UK, V6, DOI 10.1038/srep22256
Griffith P.R., 2007, FOURIER TRANSFORM IN
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Gruene P, 2008, SCIENCE, V321, P674, DOI 10.1126/science.1161166
Han NR, 2014, OPT LETT, V39, P3480, DOI 10.1364/OL.39.003480
Han RN, 2013, IEEE J SOLID-ST CIRC, V48, P2296, DOI 10.1109/JSSC.2013.2269856
Hanham SM, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4927242
Hassel J, 2015, PROC SPIE, V9651, DOI 10.1117/12.2197522
Hauri CP, 2011, APPL PHYS LETT, V99, DOI 10.1063/1.3655331
He W, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4932099
Hebling J, 2002, OPT EXPRESS, V10, P1161, DOI 10.1364/OE.10.001161
Heinz E, 2015, J INFRARED MILLIM TE, V36, P879, DOI 10.1007/s10762-015-0170-8
Henry SC, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.9.091603
Hesler J L, 2006, P 7 INT S SPAC TER T, P215
Hintzsche H, 2012, CRIT REV ENV SCI TEC, V42, P2408, DOI 10.1080/10643389.2011.574206
Hishida M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.158102
Ho IC, 2010, OPT EXPRESS, V18, P2872, DOI 10.1364/OE.18.002872
HU BB, 1995, OPT LETT, V20, P1716, DOI 10.1364/OL.20.001716
Huang C, 2012, PHYS REV B, V85
Huber R, 2001, NATURE, V414, P286, DOI 10.1038/35104522
Jankowiak A., 2013, Synchrotron Radiation News, V26, P22, DOI 10.1080/08940886.2013.791212
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Jepsen PU, 2011, LASER PHOTONICS REV, V5, P124, DOI 10.1002/lpor.201000011
Jepsen PU, 2005, OPT LETT, V30, P29, DOI 10.1364/OL.30.000029
JUICE-Jupiter Icy Moons Explorer, 2014, SRE20141 JUICE EUR S, P1
Kallfass I, 2011, IEEE T THZ SCI TECHN, V1, P477, DOI 10.1109/TTHZ.2011.2160021
Kampfrath T, 2013, NAT PHOTONICS, V7, P680, DOI [10.1038/nphoton.2013.184, 10.1038/NPHOTON.2013.184]
Kan T, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9422
Karpowicz N, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2828709
Kehr SC, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.256403
Kemp MC, 2011, IEEE T THZ SCI TECHN, V1, P282, DOI 10.1109/TTHZ.2011.2159647
Khalid A, 2014, J APPL PHYS, V115, DOI 10.1063/1.4868705
Kirley MP, 2015, IEEE T THZ SCI TECHN, V5, P1012, DOI 10.1109/TTHZ.2015.2468074
Kiwa T, 2003, OPT LETT, V28, P2058, DOI 10.1364/OL.28.002058
Koch M, 2001, NATO SCI SER II MATH, V27, P241
Koenig S, 2013, NAT PHOTONICS, V7, P977, DOI [10.1038/nphoton.2013.275, 10.1038/NPHOTON.2013.275]
Kohler R, 2002, NATURE, V417, P156, DOI 10.1038/417156a
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]
Kosarev A, 2010, SOLID STATE ELECTRON, V54, P417, DOI 10.1016/j.sse.2009.12.032
Kundu I, 2014, OPT EXPRESS, V22, P16595, DOI 10.1364/OE.22.016595
Kuznetsov SA, 2010, KEY ENG MATER, V437, P276, DOI 10.4028/www.scientific.net/KEM.437.276
Langevin Y, 2005, PAYLOAD MISSION DEFI
LaRue JL, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.036103
Leitenstorfer A, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/045016
Leitner DM, 2006, INT REV PHYS CHEM, V25, P553, DOI 10.1080/01442350600862117
Li LH, 2014, ELECTRON LETT, V50, P309, DOI 10.1049/el.2013.4035
Liu L, 2010, IEEE MICROW WIREL CO, V20, P504, DOI 10.1109/LMWC.2010.2055553
Liu SC, 2016, OPT EXPRESS, V24, P2728, DOI 10.1364/OE.24.002728
Lu X H, 2008, P SOC PHOTO-OPT INS, V7277
Luukanen A, 2003, APPL PHYS LETT, V82, P3970, DOI 10.1063/1.1579562
Mann C, 2009, P SOC PHOTO-OPT INS, V7311, P3970
Mickan S, 2004, PROC SPIE, V5277, P54, DOI 10.1117/12.530386
Mineo M, 2010, IEEE T ELECTRON DEV, V57, P3169, DOI 10.1109/TED.2010.2071876
Mittleman DM, 1996, IEEE J SEL TOP QUANT, V2, P679, DOI 10.1109/2944.571768
Mittleman DM, 1999, APPL PHYS B-LASERS O, V68, P1085, DOI 10.1007/s003400050750
Moon K, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4733475
Muller AS, 2010, REV ACCEL SCI TECH, V3, P165, DOI 10.1142/S1793626810000427
Muller R, 2015, J INFRARED MILLIM TE, V36, P654, DOI 10.1007/s10762-015-0163-7
Naftaly M, 2015, TERAHERTZ METROLOGY, P1
Nagai M, 2015, OPT EXPRESS, V23, P4641, DOI 10.1364/OE.23.004641
Nagatsuma T, 2012, OPT EXPRESS, V21, P477
Nagel M, 2002, APPL PHYS LETT, V80, P154, DOI 10.1063/1.1428619
Navarro-Cia M, 2015, J INFRARED MILLIM TE, V36, P542, DOI 10.1007/s10762-015-0157-5
Nielsen K, 2009, OPT EXPRESS, V17, P8592, DOI 10.1364/OE.17.008592
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
Nordquist CD, 2011, IEEE J SEL TOP QUANT, V17, P130, DOI 10.1109/JSTQE.2010.2049095
Oh SJ, 2012, J INFRARED MILLIM TE, V33, P74, DOI 10.1007/s10762-011-9847-9
Ojefors E, 2009, IEEE J SOLID-ST CIRC, V44, P1968, DOI 10.1109/JSSC.2009.2021911
Ortolani M, 2008, PHYS REV LETT, V97
Ozerov M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.157205
Paoloni C, 2013, IEEE T ELECTRON DEV, V60, P1236, DOI 10.1109/TED.2013.2240686
Parrott EPJ, 2015, APPL SPECTROSC, V69, P1, DOI 10.1366/14-07707
Patrashin M, 2015, IEEE T ELECTRON DEV, V62, P1068, DOI 10.1109/TED.2015.2393358
Peiponen K. E., 2013, TERAHERTZ SPECTROSCO, V171
Peng K, 2015, NANO LETT, V15, P206, DOI 10.1021/nl5033843
Pickwell E, 2004, APPL PHYS LETT, V84, P2190, DOI 10.1063/1.1688448
Ponnampalam L, 2011, J LIGHTWAVE TECHNOL, V29, P2229, DOI 10.1109/JLT.2011.2158186
Pupeza I, 2007, OPT EXPRESS, V15, P4335, DOI 10.1364/OE.15.004335
Rauter P, 2015, LASER PHOTONICS REV, V9, P452, DOI 10.1002/lpor.201500095
Reid CB, 2011, PHYS MED BIOL, V56, P4333, DOI 10.1088/0031-9155/56/14/008
Reid J R, 2012, IEEE 12 TOP M SIL MO, P17
Rosch M, 2015, NAT PHOTONICS, V9, P42, DOI [10.1038/nphoton.2014.279, 10.1038/NPHOTON.2014.279]
Rudd JV, 2000, PROC SPIE, V3934, P27, DOI 10.1117/12.386344
Rymanov V, 2015, PHOTONICS, V2, DOI 10.3390/photonics2041152
SANTOS Daisy Conceicao, 2014, THESIS
Scherger B, 2011, APPL OPTICS, V50, P2256, DOI 10.1364/AO.50.002256
Schleicher JM, 2009, J APPL PHYS, V105, DOI 10.1063/1.3133093
Schumann S, 2012, OPT EXPRESS, V20, P19200, DOI 10.1364/OE.20.019200
Seeds AJ, 2015, J LIGHTWAVE TECHNOL, V33, P579, DOI 10.1109/JLT.2014.2355137
Sell A, 2008, OPT LETT, V33, P2767, DOI 10.1364/OL.33.002767
Shams H, 2015, IEEE PHOTONICS J, V7, DOI 10.1109/JPHOT.2015.2438437
Shams H, 2014, OPT EXPRESS, V22, P23465, DOI 10.1364/OE.22.023465
Shen YC, 2004, APPL PHYS LETT, V85, P164, DOI 10.1063/1.1768313
Simoens F., 2014, PHILOS T A, V372, P1
Simoens F, 2011, 36 INT C INFR MILL T, P1
Singh A, 2015, OPT EXPRESS, V23, P6656, DOI 10.1364/OE.23.006656
Sirtori C, 2013, NAT PHOTONICS, V7, P691, DOI [10.1038/NPHOTON.2013.208, 10.1038/nphoton.2013.208]
SMITH PR, 1988, IEEE J QUANTUM ELECT, V24, P255, DOI 10.1109/3.121
Son JH, 2013, NANOTECHNOLOGY, V24, DOI 10.1088/0957-4484/24/21/214001
Swinyard B, 2013, SPIE SENSORS SYSTEMS
Sy S, 2010, PHYS MED BIOL, V55, P7587, DOI 10.1088/0031-9155/55/24/013
Taylor ZD, 2015, IEEE T THZ SCI TECHN, V5, P184, DOI 10.1109/TTHZ.2015.2392628
Teppati V, 2013, CAMB RF MICROW ENG, P1, DOI 10.1017/CBO9781139567626
Tewari P, 2012, P SPIE, V8261
Thomas B., 2014, P 39 INT C INFR MILL, P1
Thumm M, 2014, KIT SCI REPORTS, V7693
Tonouchi M, 2007, NAT PHOTONICS, V1, P97, DOI 10.1038/nphoton.2007.3
Truong BCQ, 2015, IEEE T BIO-MED ENG, V62, P699, DOI 10.1109/TBME.2014.2364025
Turcinkova D, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4916653
Turner GM, 2002, J PHYS CHEM B, V106, P11716, DOI 10.1021/jp025844e
van der Valk NCJ, 2002, APPL PHYS LETT, V81, P1558, DOI 10.1063/1.1503404
van Dijk F, 2014, IEEE PHOTONIC TECH L, V26, P965, DOI 10.1109/LPT.2014.2309353
Vicario C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.213901
Vinh NQ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4918708
Vitiello MS, 2012, NAT PHOTONICS, V6, P525, DOI 10.1038/nphoton.2012.145
Vitiello MS, 2015, OPT EXPRESS, V23, P5167, DOI 10.1364/OE.23.005167
Vitiello MS, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6884
Wade A, 2009, NAT PHOTONICS, V3, P41, DOI 10.1038/NPHOTON.2008.251
Wallace B., 2015, SPIE NEWSROOM, DOI [10.1117/2.1201503.005871, DOI 10.1117/2.1201503.005871]
Wallace VP, 2004, BRIT J DERMATOL, V151, P424, DOI 10.1111/j.1365-2133.2004.06129.x
Wang FH, 2015, OPTICA, V2, P944, DOI 10.1364/OPTICA.2.000944
Weightman P, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/053001
Wienold M, 2014, OPT EXPRESS, V22, P3334, DOI 10.1364/OE.22.003334
Wilk R, 2007, C LAS EL BALT MD
Williams BS, 2006, ELECTRON LETT, V42, P89, DOI 10.1049/el:20063921
Williams GP, 2006, REP PROG PHYS, V69, P301, DOI 10.1088/0034-4885/69/2/R01
Williams GP, 2008, NAT PHYS, V4, P356, DOI 10.1038/nphys958
Williams MRC, 2013, J PHYS CHEM B, V117, P10444, DOI 10.1021/jp406730a
Williams R, 2013, PHYS MED BIOL, V58, P373, DOI 10.1088/0031-9155/58/2/373
Withayachumnankul W, 2008, J OPT SOC AM B, V25, P1059, DOI 10.1364/JOSAB.25.001059
Woerner M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/025039
Woodward RM, 2003, J INVEST DERMATOL, V120, P72, DOI 10.1046/j.1523-1747.2003.12013.x
Wu X, OPT LETT, V39, P5403
Wu ZR, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4790427
Xu J, 2003, PROC SPIE, V5268, P19, DOI 10.1117/12.518533
Yamashita M, 2011, OPT EXPRESS, V19, P10864, DOI 10.1364/OE.19.010864
Yan F, 2013, J INFRARED MILLIM TE, V34, P489, DOI 10.1007/s10762-013-0005-4
Yang SH, 2014, IEEE T THZ SCI TECHN, V4, P575, DOI 10.1109/TTHZ.2014.2342505
Yeh KL, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2734374
Zamora A, 2015, IEEE MTT S INT MICR
Zhao JF, 2011, IEEE T ELECTRON DEV, V58, P1221, DOI 10.1109/TED.2011.2109723
Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431]
Zhou Y, 2010, PROG ELECTROMAGN RES, V105, P71, DOI 10.2528/PIER10041806
Zibik EA, 2009, NAT MATER, V8, P803, DOI [10.1038/nmat2511, 10.1038/NMAT2511]
Dhillon, S. S. Vitiello, M. S. Linfield, E. H. Davies, A. G. Hoffmann, Matthias C. Booske, John Paoloni, Claudio Gensch, M. Weightman, P. Williams, G. P. Castro-Camus, E. Cumming, D. R. S. Simoens, F. Escorcia-Carranza, I. Grant, J. Lucyszyn, Stepan Kuwata-Gonokami, Makoto Konishi, Kuniaki Koch, Martin Schmuttenmaer, Charles A. Cocker, Tyler L. Huber, Rupert Markelz, A. G. Taylor, Z. D. Wallace, Vincent P. Zeitler, J. Axel Sibik, Juraj Korter, Timothy M. Ellison, B. Rea, S. Goldsmith, P. Cooper, Ken B. Appleby, Roger Pardo, D. Huggard, P. G. Krozer, V. Shams, Haymen Fice, Martyn Renaud, Cyril Seeds, Alwyn Stoehr, Andreas Naftaly, Mira Ridler, Nick Clarke, Roland Cunningham, John E. Johnston, Michael B.
Huggard, Peter/U-2150-2019; Konishi, Kuniaki/AAN-3624-2020; Zeitler, J. Axel/B-4885-2008; Paoloni, Claudio/AAH-9824-2019; Hoffmann, Matthias C./N-1082-2019; Wallace, Vincent P/A-9320-2012; Johnston, Michael/B-9813-2008; Castro-Camus, Enrique/V-6861-2019; Krozer, Viktor/P-5623-2014; Hoffmann, Matthias C/B-3893-2009; PAOLONI, CLAUDIO/AAA-3211-2020; Gonokami, Makoto/F-3641-2012; Shams, Haymen/H-3754-2012; Ridler, Nick/AAN-9637-2020; Huber, Rupert/N-4126-2018
Konishi, Kuniaki/0000-0003-2389-9787; Zeitler, J. Axel/0000-0002-4958-0582; Hoffmann, Matthias C./0000-0002-3596-9853; Wallace, Vincent P/0000-0003-3814-5400; Johnston, Michael/0000-0002-0301-8033; Krozer, Viktor/0000-0002-2387-1947; Hoffmann, Matthias C/0000-0002-3596-9853; PAOLONI, CLAUDIO/0000-0002-0265-0862; Shams, Haymen/0000-0002-5333-6478; Huber, Rupert/0000-0001-6617-9283; Davies, Alexander/0000-0002-1987-4846; Seeds, Alwyn/0000-0002-5228-627X; Castro-Camus, Enrique/0000-0002-8218-9155; Cunningham, John/0000-0002-1805-9743; Naftaly, Mira/0000-0002-0671-822X; Cumming, David/0000-0002-7838-8362
Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/P015883/1, EP/M00306X/1, EP/K023349/1, EP/M017095/1, EP/L026597/1, EP/J017671/1] Funding Source: researchfish; Natural Environment Research CouncilUK Research & Innovation (UKRI)NERC Natural Environment Research Council [NER/Z/S/2003/00642, NE/L012375/1, NER/Z/S/2000/01292] Funding Source: researchfish; Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/P002056/1] Funding Source: researchfish; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Molecular and Cellular BioscienceNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1616529] Funding Source: National Science Foundation
566
30
462
Iop publishing ltd
Bristol
1361-6463 ER - TY - JOUR T1 - Optical measurements of long-range protein vibrations JF - Nature Communications Y1 - 2014 A1 - Acbas, G. A1 - Niessen, K. A. A1 - Snell, E. H. A1 - Markelz, A. G. KW - absorption KW - crystals KW - dynamics KW - frequency raman-spectra KW - hydration KW - lysozyme KW - motions KW - Science & Technology - Other Topics KW - sensitivity KW - simulations KW - spectroscopy AB -

Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm(-1). The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

VL - 5 SN - 2041-1723 N1 - ISI Document Delivery No.: AA4RQ
Times Cited: 101
Cited Reference Count: 48
Cited References:
AUSTIN RH, 1989, PHYS REV LETT, V62, P1912, DOI 10.1103/PhysRevLett.62.1912
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Balabin IA, 2000, SCIENCE, V290, P114, DOI 10.1126/science.290.5489.114
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Barth A, 2002, Q REV BIOPHYS, V35, P369, DOI 10.1017/S0033583502003815
Benkovic SJ, 2003, SCIENCE, V301, P1196, DOI 10.1126/science.1085515
Brooks BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brooks CL, 1988, PROTEINS THEORETICAL
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Ding T, 2012, VIB SPECTROSC, V61, P144, DOI 10.1016/j.vibspec.2012.02.020
GENZEL L, 1976, BIOPOLYMERS, V15, P219, DOI 10.1002/bip.1976.360150115
George DK, 2013, IEEE T THZ SCI TECHN, V3, P288, DOI 10.1109/TTHZ.2013.2256233
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Hafner J, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3646312
Hammes GG, 2002, BIOCHEMISTRY-US, V41, P8221, DOI 10.1021/bi0260839
He YF, 2011, BIOPHYS J, V100, P1058, DOI 10.1016/j.bpj.2010.12.3731
KACHALOVA GS, 1991, FEBS LETT, V284, P91, DOI 10.1016/0014-5793(91)80769-Y
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Knab JR, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3467192
LEVY RM, 1984, J PHYS CHEM-US, V88, P4233, DOI 10.1021/j150663a009
Lipps F, 2012, PHYS CHEM CHEM PHYS, V14, P6375, DOI 10.1039/c2cp23760a
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
MacKerell AD, 1998, J PHYS CHEM B, V102, P3586, DOI 10.1021/jp973084f
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Meinhold L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.138101
Meinhold L, 2007, PROTEINS, V66, P941, DOI 10.1002/prot.21246
Mittleman D.M., 2003, SENSING TERAHERTZ RA
MOELLER KD, 1992, BIOPHYS J, V61, P276, DOI 10.1016/S0006-3495(92)81834-9
Perutz MF, 1998, ANNU REV BIOPH BIOM, V27, P1, DOI 10.1146/annurev.biophys.27.1.1
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
Sakai K., 2005, TERAHERTZ OPTOELECTR
Schumacher M, 2002, NATURE, V417, P501, DOI 10.1038/417501a
Siegrist K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
SMITH J, 1990, J CHEM PHYS, V93, P2974, DOI 10.1063/1.458885
SMITH JC, 1991, Q REV BIOPHYS, V24, P227, DOI 10.1017/S0033583500003723
TEETER MM, 1990, J PHYS CHEM-US, V94, P8091, DOI 10.1021/j100384a021
TIDOR B, 1994, J MOL BIOL, V238, P405, DOI 10.1006/jmbi.1994.1300
Tych KM, 2011, J APPL CRYSTALLOGR, V44, P129, DOI 10.1107/S0021889810043372
Urabe H, 1998, BIOPHYS J, V74, P1533, DOI 10.1016/S0006-3495(98)77865-8
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Xie AH, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.018102
Xu J, 2006, J PHYS CHEM B, V110, P24255, DOI 10.1021/jp064830w
Acbas, Gheorghe Niessen, Katherine A. Snell, Edward H. Markelz, A. G.
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191; Markelz, Andrea/0000-0003-0443-4319
National Science Foundation MRIboolean AND2 grant [DBI2959989]
We thank Yunfen He and Benjamin Keen for their assistance with calculations. All calculations performed using facilities provided by The Center for Computational Research, SUNY, Buffalo. We thank the National Science Foundation MRI boolean AND 2 grant DBI2959989 for support.
101
4
108
Nature publishing group
London ER - TY - Generic T1 - Measuring phonons in protein crystals T2 - Ultrafast Phenomena and Nanophotonics Xvii Y1 - 2013 A1 - Acbas, G. A1 - Niessen, K. A. A1 - George, D. K. A1 - Snell, E. A1 - Markelz, A. G. ED - Betz, M. ED - Elezzabi, A. Y. ED - Song, J. J. ED - Tsen, K. T. KW - correlated motions KW - dynamics KW - mode KW - molecular crystals KW - molecular vibrations KW - normal modes KW - phonons KW - protein dynamics KW - spectroscopy KW - Terahertz AB -

Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.

JF - Ultrafast Phenomena and Nanophotonics Xvii T3 - Proceedings of SPIE PB - Spie-Int Soc Optical Engineering CY - Bellingham VL - 8623 SN - 978-0-8194-9392-7 N1 - ISI Document Delivery No.: BGG42
Times Cited: 0
Cited Reference Count: 5
Cited References:
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
BROOKS B, 1985, P NATL ACAD SCI USA, V82, P4995, DOI 10.1073/pnas.82.15.4995
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Acbas, Gheorghe Niessen, Katherine A. George, Deepu K. Snell, Edward Markelz, A. G.
Proceedings Paper
Conference on Ultrafast Phenomena and Nanophotonics XVII
Feb 03-06, 2013
San Francisco, CA
SPIE, Femtolasers Inc
Snell, Edward/G-2055-2018; George, Deepu/J-9882-2014
Snell, Edward/0000-0001-8714-3191; George, Deepu/0000-0003-0021-0705; Markelz, Andrea/0000-0003-0443-4319
National Science Foundation MRI2 [DBI2959989]
We thank the National Science Foundation MRI2 grant DBI2959989 for support.
1000 20th st, po box 10, bellingham, wa 98227-0010 usa
0277-786x
862305 ER - TY - Generic T1 - Orientation Sensitive Terahertz Resonances Observed in Protein Crystals T2 - 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves Y1 - 2012 A1 - Acbas, G. A1 - Snell, E. A1 - Markelz, A. G. KW - dynamics KW - mode AB -

A method is presented for measuring anisotropic THz response for small crystals, Crystal Anisotropy Terahertz Microscopy (CATM). Sucrose CATM measurements find the expected anisotropic phonon resonances. CATM measurements of protein crystals find the expected broadband water absorption is suppressed and strong orientation and hydration dependent resonant features.

JF - 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves T3 - International Conference on Infrared Millimeter and Terahertz Waves PB - Ieee CY - New York SN - 978-1-4673-1597-5 N1 - ISI Document Delivery No.: BJT74
Times Cited: 1
Cited Reference Count: 15
Cited References:
Arora K, 2007, P NATL ACAD SCI USA, V104, P18496, DOI 10.1073/pnas.0706443104
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Balu R, 2008, BIOPHYS J, V94, P3217, DOI 10.1529/biophysj.107.105163
BROOKS B, 1985, P NATL ACAD SCI USA, V82, P4995, DOI 10.1073/pnas.82.15.4995
Goodey NM, 2008, NAT CHEM BIOL, V4, P474, DOI 10.1038/nchembio.98
Hammes-Schiffer S, 2006, ANNU REV BIOCHEM, V75, P519, DOI 10.1146/annurev.biochem.75.103004.142800
Jarymowycz VA, 2006, CHEM REV, V106, P1624, DOI 10.1021/cr040421p
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Knab JR, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3467192
Lange OF, 2008, SCIENCE, V320, P1471, DOI 10.1126/science.1157092
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
Mellinger JS, 2007, J PHYS CHEM A, V111, P10977, DOI 10.1021/jp074975i
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
Tych KM, 2011, J APPL CRYSTALLOGR, V44, P129, DOI 10.1107/S0021889810043372
Acbas, Gheorghe Snell, Edward Markelz, A. G.
Irmmw-thz
Proceedings Paper
37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)
Sep 23-28, 2012
Univ Wollongong, Wollongong, AUSTRALIA
IEEE, USN, Off Naval Res Sci & Technol, ETRI, UOW, Sch Engn Phys, Ctr Ultrahigh Bandwidth Devices Opt Syst, Victoria Suntech Adv Solar Facil, Swinburne, Ctr Micro Photon, Edinburgh Photon, Tydex, TRAS Inc, Inst Photon & Opt Sci, LakeShore, Australian Synchrotron, CSIRO, Univ Wollongong, Inst Superconducting & Elect Mat, Ctr Med Radiat Phys, Univ Sydney, IEEE Microwave Theory & Tech Soc
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191
345 e 47th st, new york, ny 10017 usa
2162-2027 ER - TY - JOUR T1 - Terahertz Response and Colossal Kerr Rotation from the Surface States of the Topological Insulator Bi2Se3 JF - Physical Review Letters Y1 - 2012 A1 - Aguilar, R. V. A1 - Stier, A. V. A1 - Liu, W. A1 - Bilbro, L. S. A1 - George, D. K. A1 - Bansal, N. A1 - Wu, L. A1 - Cerne, J. A1 - Markelz, A. G. A1 - Oh, S. A1 - Armitage, N. P. KW - bi2te3 KW - Physics AB -

We report the THz response of thin films of the topological insulator Bi2Se3. At low frequencies, transport is essentially thickness independent showing the dominant contribution of the surface electrons. Despite their extended exposure to ambient conditions, these surfaces exhibit robust properties including narrow, almost thickness-independent Drude peaks, and an unprecedentedly large polarization rotation of linearly polarized light reflected in an applied magnetic field. This Kerr rotation can be as large as 65 degrees and can be explained by a cyclotron resonance effect of the surface states.

VL - 108 SN - 0031-9007 N1 - ISI Document Delivery No.: 896NY
Times Cited: 164
Cited Reference Count: 35
Cited References:
Akhmerov AR, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.216404
Alpichshev Z, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.016401
Analytis JG, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.205407
Bansal N., ARXIV11045709
Benia HM, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.177602
Bianchi M, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1131
Butch NP, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.241301
Chen J, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.241304
Chen YL, 2009, SCIENCE, V325, P178, DOI 10.1126/science.1173034
Essin AM, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.146805
Eto K, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195309
Fu L, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.045302
Fu L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.096407
Hsieh D, 2008, NATURE, V452, P970, DOI 10.1038/nature06843
Hsieh D, 2009, NATURE, V460, P1101, DOI 10.1038/nature08234
Jenkins GS, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125120
King PDC, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.096802
LaForge AD, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.125120
Lan YP, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.205109
Maciejko J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.166803
Moore JE, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.121306
Qi XL, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.195424
Qu DX, 2010, SCIENCE, V329, P821, DOI 10.1126/science.1189792
Roushan P, 2009, NATURE, V460, P1106, DOI 10.1038/nature08308
Roy R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.195322
Steinberg H, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.233101
Sushkov AB, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.125110
THOULESS DJ, 1982, PHYS REV LETT, V49, P405, DOI 10.1103/PhysRevLett.49.405
Tkachov G, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.035405
Tse WK, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.161104
Tse WK, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.057401
VONKLITZING K, 1980, PHYS REV LETT, V45, P494, DOI 10.1103/physrevlett.45.494
Xia Y, 2009, NAT PHYS, V5, P398, DOI 10.1038/NPHYS1274
Xiong J., PHYSICA A E IN PRESS
Zhang XA, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.245107
Aguilar, R. Valdes Stier, A. V. Liu, W. Bilbro, L. S. George, D. K. Bansal, N. Wu, L. Cerne, J. Markelz, A. G. Oh, S. Armitage, N. P.
George, Deepu/J-9882-2014; Aguilar, Rolando Valdes/A-6637-2012; Liu, Wei/H-5999-2012; Wu, Liang/C-8715-2015
George, Deepu/0000-0003-0021-0705; Aguilar, Rolando Valdes/0000-0002-4321-4792; Wu, Liang/0000-0003-1696-7809; Markelz, Andrea/0000-0003-0443-4319
"Institute for Quantum Matter" DOE [DE-FG02-08ER46544]; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; NSFNational Science Foundation (NSF) [MRI-R2 0959989, DMR-1006078, DMR-0845464]; IAMDN of Rutgers University; ONROffice of Naval Research [N000140910749]; Division Of Materials ResearchNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [0845464] Funding Source: National Science Foundation
The authors would like to thank H. D. Drew, J. Hancock, Z. Hao, G. S. Jenkins, A. Kuzmenko, A. MacDonald, N. A. Mecholsky, A. J. Pearson, O. Tchernyshyov, W-K. Tse, and Y. Wan for helpful discussions and/or correspondences. Support for the measurements at JHU was provided under the auspices of the "Institute for Quantum Matter" DOE DE-FG02-08ER46544 and the Gordon and Betty Moore Foundation. The work at UB was supported by NSF MRI-R2 0959989 and NSF DMR-1006078. The work at Rutgers was supported by IAMDN of Rutgers University, NSF DMR-0845464 and ONR N000140910749.
166
3
157
Amer physical soc
College pk ER - TY - JOUR T1 - Terahertz response of quantum point contacts JF - Applied Physics LettersApplied Physics LettersApplied Physics Letters Y1 - 2008 A1 - Song, J. W. A1 - Kabir, N. A. A1 - Kawano, Y. A1 - Ishibashi, K. A1 - Aizin, G. R. A1 - Mourokh, L. A1 - Reno, J. L. A1 - Markelz, A. G. A1 - Bird, J. P. KW - detector KW - devices KW - field-effect transistors KW - Physics KW - plasma-waves KW - radiation KW - resonant detection KW - subterahertz KW - transport AB -

We measure a clear terahertz response in the low-temperature conductance of a quantum point contact at 1.4 and 2.5 THz. We show that this photoresponse does not arise from a heating effect, but that it is instead excellently described by a classical model of terahertz-induced gate-voltage rectification. This effect is distinct from the rectification mechanisms that have been studied previously, being determined by the phase-dependent interference of the source drain and gate voltage modulations induced by the terahertz field. (C) 2008 American Institute of Physics.

VL - 92 SN - 0003-6951 N1 - ISI Document Delivery No.: 310KL
Times Cited: 25
Cited Reference Count: 21
Cited References:
Aizin GR, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2800369
ARNONE DD, 1995, APPL PHYS LETT, V66, P3149, DOI 10.1063/1.113705
FENG SC, 1993, PHYS REV B, V48, P5354, DOI 10.1103/PhysRevB.48.5354
Hashiba H, 2004, APPL PHYS LETT, V85, P6036, DOI 10.1063/1.1834716
HU Q, 1993, APPL PHYS LETT, V62, P837, DOI 10.1063/1.108567
Hu Q, 1996, SEMICOND SCI TECH, V11, P1888, DOI 10.1088/0268-1242/11/12/021
JANSSEN TJBM, 1994, J PHYS-CONDENS MAT, V6, pL163, DOI 10.1088/0953-8984/6/13/002
Kabir NA, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2357605
KARADI C, 1994, J OPT SOC AM B, V11, P2566, DOI 10.1364/JOSAB.11.002566
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Lee M, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1851606
MITTLEMAN D, 2002, SPRINGER SERIES OPTI
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Ryzhii V, 2006, JPN J APPL PHYS 2, V45, pL1118, DOI 10.1143/JJAP.45.L1118
Shaner EA, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2735943
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
Teppe F, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2005394
VANHOUTEN H, 1992, SEMICONDUCT SEMIMET, P9
WYSS RA, 1993, APPL PHYS LETT, V63, P1522, DOI 10.1063/1.110736
WYSS RA, 1995, APPL PHYS LETT, V66, P1144, DOI 10.1063/1.113840
Song, J. W. Kabir, N. A. Kawano, Y. Ishibashi, K. Aizin, G. R. Mourokh, L. Reno, J. L. Markelz, A. G. Bird, J. P.
Ishibashi, Koji/G-7065-2012; Bird, Jonathan P/G-4068-2010
Ishibashi, Koji/0000-0001-8131-9969; Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
27

6
Amer inst physics
Melville
1077-3118 JO - Appl. Phys. Lett.Appl. Phys. Lett. ER - TY - JOUR T1 - Relaxation times in InAs/AlSb quantum wells JF - Applied Physics Letters Y1 - 1998 A1 - Markelz, A. G. A1 - Asmar, N. G. A1 - Gwinn, E. G. VL - 72 UR - https://aip.scitation.org/doi/abs/10.1063/1.121377 ER - TY - JOUR T1 - Interband impact ionization by terahertz illumination of InAs heterostructures JF - Applied Physics Letters Y1 - 1996 A1 - Markelz, A. G. A1 - Asmar, N. G. A1 - Brar, B. A1 - Gwinn, E. G. KW - energy KW - far-infrared excitation KW - inas/alsb quantum-wells KW - inplane KW - modulation KW - Physics AB -

Experimental studies of InAs heterostructures illuminated by far-infrared (FIR) radiation reveal an abrupt increase in the charge density for FIR intensities above a threshold value that rises with increasing frequency. We attribute this charge density rise to interband impact ionization in a regime in which omega tau(m) similar to 1, where tau(m) is the momentum relaxation time, and f=omega/2 pi is the FIR frequency. The dependence of the density rise on the FIR field strength supports this interpretation, and gives threshold fields of 3.7-8.9 kV/cm for the frequency range 0.3-0.66 THz. (C) 1996 American Institute of Physics.

VL - 69 SN - 0003-6951 N1 - ISI Document Delivery No.: VY894
Times Cited: 91
Cited Reference Count: 17
Cited References:
ASMAR NG, 1995, PHYS REV B, V51, P18041, DOI 10.1103/PhysRevB.51.18041
Asmar NG, 1996, APPL PHYS LETT, V68, P829, DOI 10.1063/1.116547
BAIER HU, 1986, SOLID STATE COMMUN, V58, P327, DOI 10.1016/0038-1098(86)90094-3
BLOEMBER.N, 1974, IEEE J QUANTUM ELECT, VQE10, P375, DOI 10.1109/JQE.1974.1068132
BOLOGNESI CR, 1994, IEEE ELECTR DEVICE L, V15, P16, DOI 10.1109/55.289476
CERNE J, 1995, PHYS REV B, V51, P5253, DOI 10.1103/PhysRevB.51.5253
GANICHEV SD, 1986, ZH EKSP TEOR FIZ+, V90, P445
GAUER C, 1994, SEMICOND SCI TECH, V9, P1580, DOI 10.1088/0268-1242/9/9/002
Kochman B, 1996, APPL PHYS LETT, V68, P1936, DOI 10.1063/1.115631
MARKELZ AG, 1994, SOLID STATE ELECTRON, V37, P1243, DOI 10.1016/0038-1101(94)90399-9
MARKELZ AG, 1994, SEMICOND SCI TECH, V9, P634, DOI 10.1088/0268-1242/9/5S/063
NGUYEN C, 1993, J VAC SCI TECHNOL B, V11, P1706, DOI 10.1116/1.586509
NGUYEN C, 1993, J ELECTRON MATER, V22, P255, DOI 10.1007/BF02665035
TUTTLE G, 1990, J APPL PHYS, V67, P3032, DOI 10.1063/1.345426
Walpole J. N., 1971, Journal of Applied Physics, V42, P5609, DOI 10.1063/1.1659990
WHITE CRH, 1991, APPL PHYS LETT, V58, P1164, DOI 10.1063/1.104352
XIE H, 1994, J APPL PHYS, V76, P92, DOI 10.1063/1.357065
Markelz, AG Asmar, NG Brar, B Gwinn, EG
Markelz, Andrea/0000-0003-0443-4319
92

6
Amer inst physics
Melville
1077-3118 JO - Appl. Phys. Lett.Appl. Phys. Lett. ER - TY - JOUR T1 - Temperature of quasi-two-dimensional electron gases under steady-state terahertz drive JF - Applied Physics Letters Y1 - 1996 A1 - Asmar, N. G. A1 - Cerne, J. A1 - Markelz, A. G. A1 - Gwinn, E. G. A1 - Sherwin, M. S. A1 - Campman, K. L. A1 - Gossard, A. C. KW - hot-electrons KW - Physics AB -

We use photoluminescence to study the time-average energy distribution of electrons in the presence of strong steady-state drive at terahertz (THz) frequencies, in a modulation-doped 125 Angstrom AlGaAs/GaAs square well that is held at low lattice temperature TL. We find that the energy distribution can be characterized by an effective electron temperature, T-e(>T-L), that agrees well with values estimated from the THz-illuminated, dc conductivity. This agreement indicates that under strong THz drive, LO phonon scattering dominates both energy and momentum relaxation; that the carrier distribution maintains a heated, thermal form; and that phonon drift effects are negligible. (C) 1996 American Institute of Physics.

VL - 68 SN - 0003-6951 N1 - ISI Document Delivery No.: TT663
Times Cited: 59
Cited Reference Count: 12
Cited References:
ASMAR NG, 1995, PHYS REV B, V51, P18041, DOI 10.1103/PhysRevB.51.18041
BETHUNE DS, 1989, J OPT SOC AM B, V6, P910, DOI 10.1364/JOSAB.6.000910
CERNE J, 1995, PHYS REV B, V51, P5253, DOI 10.1103/PhysRevB.51.5253
CONWELL E, 1967, SOLID STATE PHYS S, V9
GUPTA R, 1992, PHYS REV B, V46, P7745, DOI 10.1103/PhysRevB.46.7745
HEYMAN JN, 1994, PHYS REV LETT, V72, P2183, DOI 10.1103/PhysRevLett.72.2183
KOMIYAMA S, 1985, PHYS REV B, V32, P5532, DOI 10.1103/PhysRevB.32.5532
MARKELZ AG, 1994, SOLID STATE ELECTRON, V37, P1243, DOI 10.1016/0038-1101(94)90399-9
MARKELZ AG, 1995, THESIS U CALIFORNIA
SHAH J, 1984, APPL PHYS LETT, V44, P322, DOI 10.1063/1.94739
SHAH J, 1978, SOLID STATE ELECTRON, V21, P43, DOI 10.1016/0038-1101(78)90113-2
YANG CH, 1985, PHYS REV LETT, V55, P2359, DOI 10.1103/PhysRevLett.55.2359
Asmar, NG Cerne, J Markelz, AG Gwinn, EG Sherwin, MS Campman, KL Gossard, AC
Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
59

7
Amer inst physics
Woodbury JO - Appl. Phys. Lett.Appl. Phys. Lett. ER - TY - CHAP T1 - Third Harmonic Generation in a Gaas/Algaas Superlattice in the Bloch Oscillator Regime T2 - Hot Carriers in Semiconductors Y1 - 1996 A1 - Wanke, M. C. A1 - Markelz, A. G. A1 - Unterrainer, K. A1 - Allen, S. J. A1 - Bhatt, R. JF - Hot Carriers in Semiconductors PB - Plenum Press CY - New York, NY VL - eds. Hess, Karl, Leburton, J.P., Ravaioli, U. UR - https://www.springer.com/gp/book/9781461380351 ER - TY - JOUR T1 - QUENCHING OF EXCITONIC QUANTUM-WELL PHOTOLUMINESCENCE BY INTENSE FAR-INFRARED RADIATION - FREE-CARRIER HEATING JF - Physical Review B Y1 - 1995 A1 - Cerne, J. A1 - Markelz, A. G. A1 - Sherwin, M. S. A1 - Allen, S. J. A1 - Sundaram, M. A1 - Gossard, A. C. A1 - Vanson, P. C. A1 - Bimberg, D. VL - 51 SN - 0163-1829 N1 - Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
29 ER - TY - JOUR T1 - RESONANT-ENERGY RELAXATION OF TERAHERTZ-DRIVEN 2-DIMENSIONAL ELECTRON GASES JF - Physical Review B Y1 - 1995 A1 - Asmar, N. G. A1 - Markelz, A. G. A1 - Gwinn, E. G. A1 - Cerne, J. A1 - Sherwin, M. S. A1 - Campman, K. L. A1 - Hopkins, P. F. A1 - Gossard, A. C. VL - 51 SN - 0163-1829 N1 - Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
119 ER - TY - Generic T1 - Terahertz grid frequency doublers T2 - Proc. Sixth Intl. Symp. Space Terahertz Tech Y1 - 1995 A1 - Chiao, Jung-Chih A1 - Markelz, Andrea A1 - Li, Yongjun A1 - Hacker, Jonathan A1 - Crowe, Thomas A1 - Allen, James A1 - Rutledge, David JF - Proc. Sixth Intl. Symp. Space Terahertz Tech PB - Citeseer UR - https://www.nrao.edu/meetings/isstt/papers/1995/1995199206.pdf ER - TY - Generic T1 - Third harmonic generation in a GaAs/AlGaAs Superlattice in the Bloch Oscillator Regime T2 - Proceedings of the International Conference on Hot Carriers in Seminconductors Y1 - 1995 A1 - Wanke, M. C. A1 - Markelz, A.G. A1 - Unterrainer, K. A1 - Allen, S. J. A1 - Bhatt, R. JF - Proceedings of the International Conference on Hot Carriers in Seminconductors CY - Chicago, IL ER - TY - JOUR T1 - DC TRANSPORT IN INTENSE, INPLANE TERAHERTZ ELECTRIC-FIELDS IN AL(X)GA(1-X)AS HETEROSTRUCTURES AT 300-K JF - Solid-State Electronics Y1 - 1994 A1 - Asmar, N. G. A1 - Markelz, A. G. A1 - Gwinn, E. G. A1 - Hopkins, P. F. A1 - Gossard, A. C. AB -

We report 300 K studies of the dependence of the in-plane, d.c. conductivity, sigma(d.c.) (E(omega)), of a quasi 2D electron gas on the amplitude E(omega) and frequency of intense, far-infrared fields (omega/2pi = 0.24-3.5 THz). We measure sigma(d.c.) (E(omega) parallel-to E(d.c.)), where E(d.c.) is a small sensing field, and observe a monotonic decrease in sigma(d.c.) with increasing E(omega). Although a simple scaling ansatz collapses the measured sigma(d.c.) (E(omega)) data onto a single curve for frequencies from 0.25-3.45 THz (at low to moderate scaled fields), the decrease in conductivity is substantially more rapid than expected from comparison to similar data taken by Masselink et al. [Solid-St. Electron. 31, 337 (1988)] at 35 GHz. We tentatively attribute this difference to effects of a high-frequency modulation in the electron temperature.

VL - 37 SN - 0038-1101 N1 - Markelz, Andrea/0000-0003-0443-4319
6th International Conference on Modulated Semiconductor Structures
Aug 23-27, 1993
Garmisch partenkir, germany
Tech univ munchen, walter schottky inst
1 ER - TY - JOUR T1 - ENERGY RELAXATION AT THZ FREQUENCIES IN ALXGA1-XAS HETEROSTRUCTURES JF - Semiconductor Science and Technology Y1 - 1994 A1 - Asmar, N. G. A1 - Markelz, A. G. A1 - Gwinn, E. G. A1 - Hopkins, P. F. A1 - Gossard, A. C. AB -

We report 4.2 K studies of the dependence of the in-plane, DC conductivity of a quasi 2D electron gas on the amplitude E(omega) of applied fields with frequencies from 0.25 THz to 3.5 THz. We analyse the dependence of sigma(DC) on E(omega) assuming that electron-optical phonon scattering dominates energy relaxation, that the absorbed power has a Drude form and that the electron distribution is thermal. This simple analysis is self-consistent: Arrhenius plots of the estimated energy loss rate have a slope near -homega(LO)BAR/k(B) for all frequencies, as expected for energy loss by optical phonon emission. We find that the effective energy relaxation time tau(epsilon) varies with the frequency of the applied field, from tau(epsilon) approximately 4 ps at 0.34 THz to tau(epsilon) approximately 0.3 ps at 3.45 THz. This may indicate a frequency-dependent form for the hot-phonon distribution.

VL - 9 SN - 0268-1242 N1 - Markelz, Andrea/0000-0003-0443-4319
S
8th International Conference on Hot Carriers in Semiconductors
Aug 16-20, 1993
Oxford univ, oxford, england
Sci & engn res council; royal soc; brit council; oxford univ
2 JO - Semicond. Sci. Technol. ER - TY - JOUR T1 - PROBING TERAHERTZ DYNAMICS IN SEMICONDUCTOR NANOSTRUCTURES WITH UCSB FREE-ELECTRON LASERS JF - Journal of Luminescence Y1 - 1994 A1 - Allen, S. J. A1 - Craig, K. A1 - Felix, C. L. A1 - Guimaraes, P. A1 - Heyman, J. N. A1 - Kaminski, J. P. A1 - Keay, B. J. A1 - Markelz, A. G. A1 - Ramian, G. A1 - Scott, J. S. A1 - Sherwin, M. S. A1 - Campman, K. L. A1 - Hopkins, P. F. A1 - Gossard, A. C. A1 - Chow, D. A1 - Lui, M. A1 - Liu, T. Y. AB -

The UCSB free-electron lasers provide kilowatts of continuously tunable radiation from 120 GHz to 4.8 THz. They have the most impact on terahertz science and technology that require a tunable, high power source to explore non-linear dynamics or that sacrifice incident power to recover the linear response of systems with very small cross-section. We describe three experiments that demonstrate the utility of these lasers in experiments on the terahertz dynamics of semiconductor nanostructures: (i) terahertz dynamics of resonant tunneling diodes, (ii) saturation spectroscopy of quantum wells and (iii) photon-assisted tunneling in superlattices.

VL - 60-1 SN - 0022-2313 N1 - Sherwin, Mark S/Q-4762-2017; Guimaraes, Paulo Sergio Soares/B-6918-2012
Sherwin, Mark S/0000-0002-3869-1893; Guimaraes, Paulo Sergio Soares/0000-0002-0113-2641; Markelz, Andrea/0000-0003-0443-4319
1993 International Conference on Luminescence (ICL 93)
Aug 09-13, 1993
Univ connecticut, storrs, ct
Univ connecticut; opt soc amer; amer phys soc; ieee, laser & electro opt soc; int union pure & appl phys; int sci fdn; univ connecticut res fdn
3 ER - TY - JOUR T1 - SUBCUBIC POWER DEPENDENCE OF 3RD-HARMONIC GENERATION FOR INPLANE, FAR-INFRARED EXCITATION OF INAS QUANTUM-WELLS JF - Semiconductor Science and Technology Y1 - 1994 A1 - Markelz, A. G. A1 - Asmar, N. G. A1 - Gwinn, E. G. A1 - Sherwin, M. S. A1 - Nguyen, C. A1 - Kroemer, H. AB -

Large third-order, free-carrier nonlinear susceptibilities, chi(3) (to approximately 0.2 esu), and subcubic dependence of the third-harmonic power on the incident intensity, have been observed between 19 cm-1 and 23 cm-1 for InAs/AlSb quantum wells with electron sheet densities between 2.5 x 10(12) cm-2 and 8 X 10(12) cm-2. We find that the transmission of the fundamental, and the samples' DC conductivity, decrease with increasing incident intensity, indicating a large rise in the scattering rate. Using the intensity-dependent transmission to account for absorption in the sample is not sufficient to recover a cubic power law for the third-harmonic intensity. In addition, given the increased scattering rate indicated by the conductivity data, the bulk free-carrier chi(3) due to non-parabolicity should decrease dramatically with increasing fundamental intensity, contrary to our results. Thus, non-parabolicity alone cannot account for the observed third-harmonic response.

VL - 9 SN - 0268-1242 N1 - Sherwin, Mark S/Q-4762-2017
Sherwin, Mark S/0000-0002-3869-1893; Markelz, Andrea/0000-0003-0443-4319
S
8th International Conference on Hot Carriers in Semiconductors
Aug 16-20, 1993
Oxford univ, oxford, england
Sci & engn res council; royal soc; brit council; oxford univ
4 JO - Semicond. Sci. Technol. ER - TY - Generic T1 - Far-infrared nonlinear response of electrons in semiconductor nanostructures T2 - SPIE Proceedings Y1 - 1993 A1 - Sherwin, M. S. A1 - Asmar, N. G. A1 - Bewley, W. W. A1 - Craig, K. A1 - Felix, C. L. A1 - Galdrikian, B. A1 - Gwinn, E. G. A1 - Markelz, A.G. A1 - Gossard, A. C. A1 - Hopkins, P. F. A1 - Sundaram, M. A1 - Birnir, B. JF - SPIE Proceedings VL - 1854 ER - TY - JOUR T1 - 8 NEW HIGH-TEMPERATURE SUPERCONDUCTORS WITH THE 1-2-4 STRUCTURE JF - Physical Review B Y1 - 1989 A1 - Morris, D. E. A1 - Nickel, J. H. A1 - Wei, J. Y. T. A1 - Asmar, N. G. A1 - Scott, J. S. A1 - Scheven, U. M. A1 - Hultgren, C. T. A1 - Markelz, A. G. A1 - Post, J. E. A1 - Heaney, P. J. A1 - Veblen, D. R. A1 - Hazen, R. M. VL - 39 SN - 0163-1829 N1 - Scheven, Ulrich/D-7582-2013
Markelz, Andrea/0000-0003-0443-4319; Scheven, Ulrich/0000-0001-8111-0081
B
241 ER - TY - JOUR T1 - OXYGEN CONCENTRATION EFFECT ON TC OF THE BI-CA-SR-CU-O SUPERCONDUCTOR JF - Physical Review B Y1 - 1989 A1 - Morris, D. E. A1 - Hultgren, C. T. A1 - Markelz, A. M. A1 - Wei, J. Y. T. A1 - Asmar, N. G. A1 - Nickel, J. H. VL - 39 SN - 0163-1829 N1 - A
155 ER -