TY - JOUR T1 - Optical measurements of long-range protein vibrations JF - Nature Communications Y1 - 2014 A1 - Acbas, G. A1 - Niessen, K. A. A1 - Snell, E. H. A1 - Markelz, A. G. KW - absorption KW - crystals KW - dynamics KW - frequency raman-spectra KW - hydration KW - lysozyme KW - motions KW - Science & Technology - Other Topics KW - sensitivity KW - simulations KW - spectroscopy AB -

Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm(-1). The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

VL - 5 SN - 2041-1723 N1 - ISI Document Delivery No.: AA4RQ
Times Cited: 101
Cited Reference Count: 48
Cited References:
AUSTIN RH, 1989, PHYS REV LETT, V62, P1912, DOI 10.1103/PhysRevLett.62.1912
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Balabin IA, 2000, SCIENCE, V290, P114, DOI 10.1126/science.290.5489.114
Balog E, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.028103
Barth A, 2002, Q REV BIOPHYS, V35, P369, DOI 10.1017/S0033583502003815
Benkovic SJ, 2003, SCIENCE, V301, P1196, DOI 10.1126/science.1085515
Brooks BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brooks CL, 1988, PROTEINS THEORETICAL
Chen JY, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2748852
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Ding T, 2012, VIB SPECTROSC, V61, P144, DOI 10.1016/j.vibspec.2012.02.020
GENZEL L, 1976, BIOPOLYMERS, V15, P219, DOI 10.1002/bip.1976.360150115
George DK, 2013, IEEE T THZ SCI TECHN, V3, P288, DOI 10.1109/TTHZ.2013.2256233
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
Hafner J, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3646312
Hammes GG, 2002, BIOCHEMISTRY-US, V41, P8221, DOI 10.1021/bi0260839
He YF, 2011, BIOPHYS J, V100, P1058, DOI 10.1016/j.bpj.2010.12.3731
KACHALOVA GS, 1991, FEBS LETT, V284, P91, DOI 10.1016/0014-5793(91)80769-Y
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Knab JR, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3467192
LEVY RM, 1984, J PHYS CHEM-US, V88, P4233, DOI 10.1021/j150663a009
Lipps F, 2012, PHYS CHEM CHEM PHYS, V14, P6375, DOI 10.1039/c2cp23760a
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
MacKerell AD, 1998, J PHYS CHEM B, V102, P3586, DOI 10.1021/jp973084f
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Meinhold L, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.138101
Meinhold L, 2007, PROTEINS, V66, P941, DOI 10.1002/prot.21246
Mittleman D.M., 2003, SENSING TERAHERTZ RA
MOELLER KD, 1992, BIOPHYS J, V61, P276, DOI 10.1016/S0006-3495(92)81834-9
Perutz MF, 1998, ANNU REV BIOPH BIOM, V27, P1, DOI 10.1146/annurev.biophys.27.1.1
Planken PCM, 2011, J INFRARED MILLIM TE, V32, P975, DOI 10.1007/s10762-011-9824-3
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
Sakai K., 2005, TERAHERTZ OPTOELECTR
Schumacher M, 2002, NATURE, V417, P501, DOI 10.1038/417501a
Siegrist K, 2006, J AM CHEM SOC, V128, P5764, DOI 10.1021/ja058176u
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
SMITH J, 1990, J CHEM PHYS, V93, P2974, DOI 10.1063/1.458885
SMITH JC, 1991, Q REV BIOPHYS, V24, P227, DOI 10.1017/S0033583500003723
TEETER MM, 1990, J PHYS CHEM-US, V94, P8091, DOI 10.1021/j100384a021
TIDOR B, 1994, J MOL BIOL, V238, P405, DOI 10.1006/jmbi.1994.1300
Tych KM, 2011, J APPL CRYSTALLOGR, V44, P129, DOI 10.1107/S0021889810043372
Urabe H, 1998, BIOPHYS J, V74, P1533, DOI 10.1016/S0006-3495(98)77865-8
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Xie AH, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.018102
Xu J, 2006, J PHYS CHEM B, V110, P24255, DOI 10.1021/jp064830w
Acbas, Gheorghe Niessen, Katherine A. Snell, Edward H. Markelz, A. G.
Snell, Edward/G-2055-2018
Snell, Edward/0000-0001-8714-3191; Markelz, Andrea/0000-0003-0443-4319
National Science Foundation MRIboolean AND2 grant [DBI2959989]
We thank Yunfen He and Benjamin Keen for their assistance with calculations. All calculations performed using facilities provided by The Center for Computational Research, SUNY, Buffalo. We thank the National Science Foundation MRI boolean AND 2 grant DBI2959989 for support.
101
4
108
Nature publishing group
London ER -