TY - JOUR T1 - Terahertz response of quantum point contacts JF - Applied Physics LettersApplied Physics LettersApplied Physics Letters Y1 - 2008 A1 - Song, J. W. A1 - Kabir, N. A. A1 - Kawano, Y. A1 - Ishibashi, K. A1 - Aizin, G. R. A1 - Mourokh, L. A1 - Reno, J. L. A1 - Markelz, A. G. A1 - Bird, J. P. KW - detector KW - devices KW - field-effect transistors KW - Physics KW - plasma-waves KW - radiation KW - resonant detection KW - subterahertz KW - transport AB -

We measure a clear terahertz response in the low-temperature conductance of a quantum point contact at 1.4 and 2.5 THz. We show that this photoresponse does not arise from a heating effect, but that it is instead excellently described by a classical model of terahertz-induced gate-voltage rectification. This effect is distinct from the rectification mechanisms that have been studied previously, being determined by the phase-dependent interference of the source drain and gate voltage modulations induced by the terahertz field. (C) 2008 American Institute of Physics.

VL - 92 SN - 0003-6951 N1 - ISI Document Delivery No.: 310KL
Times Cited: 25
Cited Reference Count: 21
Cited References:
Aizin GR, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2800369
ARNONE DD, 1995, APPL PHYS LETT, V66, P3149, DOI 10.1063/1.113705
FENG SC, 1993, PHYS REV B, V48, P5354, DOI 10.1103/PhysRevB.48.5354
Hashiba H, 2004, APPL PHYS LETT, V85, P6036, DOI 10.1063/1.1834716
HU Q, 1993, APPL PHYS LETT, V62, P837, DOI 10.1063/1.108567
Hu Q, 1996, SEMICOND SCI TECH, V11, P1888, DOI 10.1088/0268-1242/11/12/021
JANSSEN TJBM, 1994, J PHYS-CONDENS MAT, V6, pL163, DOI 10.1088/0953-8984/6/13/002
Kabir NA, 2006, APPL PHYS LETT, V89, DOI 10.1063/1.2357605
KARADI C, 1994, J OPT SOC AM B, V11, P2566, DOI 10.1364/JOSAB.11.002566
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Lee M, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1851606
MITTLEMAN D, 2002, SPRINGER SERIES OPTI
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Ryzhii V, 2006, JPN J APPL PHYS 2, V45, pL1118, DOI 10.1143/JJAP.45.L1118
Shaner EA, 2007, APPL PHYS LETT, V90, DOI 10.1063/1.2735943
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
Teppe F, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2005394
VANHOUTEN H, 1992, SEMICONDUCT SEMIMET, P9
WYSS RA, 1993, APPL PHYS LETT, V63, P1522, DOI 10.1063/1.110736
WYSS RA, 1995, APPL PHYS LETT, V66, P1144, DOI 10.1063/1.113840
Song, J. W. Kabir, N. A. Kawano, Y. Ishibashi, K. Aizin, G. R. Mourokh, L. Reno, J. L. Markelz, A. G. Bird, J. P.
Ishibashi, Koji/G-7065-2012; Bird, Jonathan P/G-4068-2010
Ishibashi, Koji/0000-0001-8131-9969; Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
27

6
Amer inst physics
Melville
1077-3118 JO - Appl. Phys. Lett.Appl. Phys. Lett. ER - TY - JOUR T1 - Terahertz transmission characteristics of high-mobility GaAs and InAs two-dimensional-electron-gas systems JF - Applied Physics Letters Y1 - 2006 A1 - Kabir, N. A. A1 - Yoon, Y. A1 - Knab, J. R. A1 - Chen, J. Y. A1 - Markelz, A. G. A1 - Reno, J. L. A1 - Sadofyev, Y. A1 - Johnson, S. A1 - Zhang, Y. H. A1 - Bird, J. P. KW - field-effect transistors KW - photoconductivity KW - Physics KW - plasma-waves KW - radiation KW - resonant detection KW - subterahertz AB -

Frequency-dependent complex conductivity of high-mobility GaAs and InAs two-dimensional-electron-gas (2DEG) systems is studied by terahertz time domain spectroscopy. Determining the momentum relaxation time from a Drude model, the authors find a lower value than that from dc measurements, particularly at high frequencies/low temperatures. These deviations are consistent with the ratio tau(t)/tau(q,) where tau(q) is the full scattering time. This suggests that small-angle scattering leads to weaker heating of 2DEGs at low temperatures than expected from dc mobilit9y. (c) 2006 American Institute of Physics.

VL - 89 SN - 0003-6951 N1 - ISI Document Delivery No.: 089JE
Times Cited: 18
Cited Reference Count: 16
Cited References:
ANDO T, 1982, REV MOD PHYS, V54, P437, DOI 10.1103/RevModPhys.54.437
ANDO T, 1989, HIGH MAGNETIC FIELDS, V2, P164
Ashcroft NW, 1976, SOLID STATE PHYS, P1
Beard MC, 2000, PHYS REV B, V62, P15764, DOI 10.1103/PhysRevB.62.15764
Cerne J, 2000, PHYS REV B, V61, P8133, DOI 10.1103/PhysRevB.61.8133
COLERIDGE PT, 1991, PHYS REV B, V44, P3793, DOI 10.1103/PhysRevB.44.3793
Dorozhkin PS, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2035883
Knap W, 2002, APPL PHYS LETT, V81, P4637, DOI 10.1063/1.1525851
Knap W, 2002, APPL PHYS LETT, V80, P3433, DOI 10.1063/1.1473685
Kukushkin IV, 2005, APPL PHYS LETT, V86, DOI 10.1063/1.1856143
MADELUNG O, 1996, SEMICONDUCTORS BASIC, P109
MCKNIGHT SW, 1987, INFRARED PHYS, V27, P327, DOI 10.1016/0020-0891(87)90074-1
Peralta XG, 2002, APPL PHYS LETT, V81, P1627, DOI 10.1063/1.1497433
Sadofyev YG, 2002, APPL PHYS LETT, V81, P1833, DOI 10.1063/1.1504882
Shaner EA, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2128057
ZAWADZKI W, 1974, ADV PHYS, V23, P435, DOI 10.1080/00018737400101371
Kabir, N. A. Yoon, Y. Knab, J. R. Chen, J. -Y. Markelz, A. G. Reno, J. L. Sadofyev, Y. Johnson, S. Zhang, Y. -H. Bird, J. P.
Bird, Jonathan P/G-4068-2010
Bird, Jonathan P/0000-0002-6966-9007; Markelz, Andrea/0000-0003-0443-4319
18

15
Amer inst physics
Melville JO - Appl. Phys. Lett.Appl. Phys. Lett. ER -