TY - JOUR T1 - Hydration and temperature interdependence of protein picosecond dynamics JF - Physical Chemistry Chemical Physics Y1 - 2012 A1 - Lipps, F. A1 - Levy, S. A1 - Markelz, A. G. KW - Chemistry KW - dielectric-relaxation KW - fluctuations KW - inelastic neutron-scattering KW - lysozyme KW - myoglobin KW - percolation KW - Physics KW - spectra KW - spectroscopy KW - terahertz beams KW - transition KW - water AB -

We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies <1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies >1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of similar to 5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network.

VL - 14 SN - 1463-9076 N1 - ISI Document Delivery No.: 928AI
Times Cited: 25
Cited Reference Count: 39
Cited References:
Bonvicini D, 1998, IEEE T DIELECT EL IN, V5, P33, DOI 10.1109/94.660757
BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211
Brovchenko I, 2008, CHEMPHYSCHEM, V9, P2695, DOI 10.1002/cphc.200800662
Chen G, 2008, PHILOS MAG, V88, P3877, DOI 10.1080/14786430802585117
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen SH, 2006, P NATL ACAD SCI USA, V103, P9012, DOI 10.1073/pnas.0602474103
Ding T, 2011, J PHYS CHEM A, V115, P11559, DOI 10.1021/jp200553d
Doster W, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.098101
DOSTER W, 1989, NATURE, V337, P754, DOI 10.1038/337754a0
Doster W, 2010, BBA-PROTEINS PROTEOM, V1804, P3, DOI 10.1016/j.bbapap.2009.06.019
Ebbinghaus S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104
Frauenfelder H, 2003, P NATL ACAD SCI USA, V100, P8615, DOI 10.1073/pnas.1633688100
GASCOYNE PRC, 1977, J CHEM SOC FARAD T 1, V73, P171, DOI 10.1039/f19777300171
GRISCHKOWSKY D, 1990, J OPT SOC AM B, V7, P2006, DOI 10.1364/JOSAB.7.002006
HARVEY SC, 1972, J PHYS CHEM-US, V76, P2987, DOI 10.1021/j100665a011
He YF, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.178103
Kauzmann W, 1942, REV MOD PHYS, V14, P0012, DOI 10.1103/RevModPhys.14.12
Khodadadi S, 2010, BBA-PROTEINS PROTEOM, V1804, P15, DOI 10.1016/j.bbapap.2009.05.006
Knab J, 2006, BIOPHYS J, V90, P2576, DOI 10.1529/biophysj.105.069088
Makarov VA, 2000, BIOPHYS J, V79, P2966, DOI 10.1016/S0006-3495(00)76533-7
Markelz AG, 2008, IEEE J SEL TOP QUANT, V14, P180, DOI 10.1109/JSTQE.2007.913424
Markelz AG, 2007, CHEM PHYS LETT, V442, P413, DOI 10.1016/j.cplett.2007.05.080
Oleinikova A, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.247802
Oleinikova A, 2005, J PHYS CHEM B, V109, P1988, DOI 10.1021/jp045903j
Oleinikova A, 2006, MOL PHYS, V104, P3841, DOI 10.1080/00268970601108229
Paciaroni A, 2008, PHILOS MAG, V88, P4071, DOI 10.1080/14786430802464263
Parak FG, 2003, CURR OPIN STRUC BIOL, V13, P552, DOI 10.1016/j.sbi.2003.09.004
Pawlus S, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.108103
Roh JH, 2006, BIOPHYS J, V91, P2573, DOI 10.1529/biophysj.106.082214
Roh JH, 2009, BIOPHYS J, V96, P2755, DOI 10.1016/j.bpj.2008.12.3895
Roh JH, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.038101
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Schiro G, 2011, J PHYS CHEM LETT, V2, P2275, DOI 10.1021/jz200797g
Shen YC, 2003, APPL PHYS LETT, V82, P2350, DOI 10.1063/1.1565680
Soderholm S, 2000, J RAMAN SPECTROSC, V31, P995, DOI 10.1002/1097-4555(200011)31:11<995::AID-JRS634>3.0.CO;2-L
Whitmire SE, 2003, BIOPHYS J, V85, P1269, DOI 10.1016/S0006-3495(03)74562-7
WU Q, 1995, APPL PHYS LETT, V67, P3523, DOI 10.1063/1.114909
Zaccai G, 2000, SCIENCE, V288, P1604, DOI 10.1126/science.288.5471.1604
Zhang CF, 2006, J PHYS CHEM B, V110, P23607, DOI 10.1021/jp063545+
Lipps, Ferdinand Levy, Seth Markelz, A. G.
Markelz, Andrea/0000-0003-0443-4319
26

66
Royal soc chemistry
Cambridge
1463-9084 JO - Phys. Chem. Chem. Phys.Phys. Chem. Chem. Phys. ER - TY - JOUR T1 - Hydration Effects on Energy Relaxation of Ferric Cytochrome C Films after Soret-Band Photoexcitation JF - Journal of Physical Chemistry B Y1 - 2010 A1 - Ye, S. J. A1 - Markelz, A. KW - Chemistry KW - circular-dichroism KW - conformation change KW - dynamics KW - ferricytochrome-c KW - protein hydration KW - resolved resonance raman KW - spectroscopy KW - unfolded states KW - vibrational-relaxation KW - water-molecules AB -

Protein hydration plays a critical role in protein dynamics and biological processes. Pump-probe transmission measurement has been applied to investigate the hydration effects on the energy relaxation of a heme protein ferric Cytochrome c (Cyt c) film after soret-band photoexcitation. Transient dynamics study indicates that the energy internal conversion time of similar to 300 fs is independent of hydration. The vibrationally excited electronic ground-state recovery rates show two transitions at the hydration level of h = 12.4-16.5% and 21.7-23.5%. The first transition occurs at the hydration level for the onset of an increasing ferric Cyt c flexibility while the second transition occurs at the saturated hydration level. The hydration dependence of steady-state electronic absorption spectrum results shows that the Q-band peak is nearly constant in center wavelength, but the line width surprisingly narrows with increasing hydration. For the similar to 695 nm absorbance associated with the MET80-Fe bond, the intensity increases with increasing hydration and slightly blue shifts. The 695 nm peak grows rapidly at h = 12.4% and then plateaus at h = 21.7%. This research shows that similar to 695 nm absorbance and ground-state recovery rates are sensitive to the hydration of the protein. This study will aid in understanding how hydration modulates the activity of the protein dynamics at a local level.

VL - 114 SN - 1520-6106 N1 - ISI Document Delivery No.: 681CT
Times Cited: 3
Cited Reference Count: 87
Cited References:
Bagchi B, 2005, CHEM REV, V105, P3197, DOI 10.1021/cr020661+
BAI YW, 1995, SCIENCE, V269, P192, DOI 10.1126/science.7618079
Bertini I, 2000, J MAGN RESON, V147, P1, DOI 10.1006/jmre.2000.2131
Bizzarri AR, 2002, J PHYS CHEM B, V106, P6617, DOI 10.1021/jp020100m
BONE S, 1985, J MOL BIOL, V181, P323, DOI 10.1016/0022-2836(85)90096-8
Bone S, 2008, J PHYS CHEM B, V112, P10071, DOI 10.1021/jp8009782
BULL HB, 1968, ARCH BIOCHEM BIOPHYS, V128, P488, DOI 10.1016/0003-9861(68)90055-6
BULL HB, 1970, ARCH BIOCHEM BIOPHYS, V137, P299, DOI 10.1016/0003-9861(70)90443-1
CHAMPION PM, 1981, J CHEM PHYS, V75, P490, DOI 10.1063/1.441846
Chen EF, 1999, J AM CHEM SOC, V121, P3811, DOI 10.1021/ja983169+
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Cianetti S, 2004, J AM CHEM SOC, V126, P13932, DOI 10.1021/ja046442i
Dragomir I, 2007, BIOPHYS J, V92, P989, DOI 10.1529/biophysj.106.095976
Eaton W A, 1981, Methods Enzymol, V76, P175
EATON WA, 1967, J CHEM PHYS, V46, P2533, DOI 10.1063/1.1841081
EATON WA, 1968, J CHEM PHYS, V49, P985, DOI 10.1063/1.1670263
Ehrler OT, 2009, ACCOUNTS CHEM RES, V42, P769, DOI 10.1021/ar800263z
FERRAND M, 1993, P NATL ACAD SCI USA, V90, P9668, DOI 10.1073/pnas.90.20.9668
GASCOYNE PRC, 1977, J CHEM SOC FARAD T 1, V73, P171, DOI 10.1039/f19777300171
GIBSON QH, 1957, NATURE, V180, P1416, DOI 10.1038/1801416b0
Gregory R.B., 1995, PROTEIN SOLVENT INTE
HALLE B, 1981, J AM CHEM SOC, V103, P500, DOI 10.1021/ja00393a004
Halle B, 2004, PHILOS T R SOC B, V359, P1207, DOI 10.1098/rstb.2004.1499
Henchman RH, 2002, PROTEIN SCI, V11, P2080, DOI 10.1110/ps.0214002
Hertel IV, 2006, REP PROG PHYS, V69, P1897, DOI 10.1088/0034-4885/69/6/R06
Jayaram B, 2004, ANNU REV BIOPH BIOM, V33, P343, DOI 10.1146/annurev.biophys.33.110502.140414
Jimenez R, 2002, J PHYS CHEM B, V106, P9172, DOI 10.1021/jp0209648
JONES CM, 1993, P NATL ACAD SCI USA, V90, P11860, DOI 10.1073/pnas.90.24.11860
Joti Y, 2008, BIOPHYS J, V94, P4435, DOI 10.1529/biophysj.107.118042
Jougeward K. A., 1988, J BIOL CHEM, V263, P6027
Kamal JKA, 2004, P NATL ACAD SCI USA, V101, P13411, DOI 10.1073/pnas.0405724101
Kamei T, 2002, BIOPHYS J, V82, P418, DOI 10.1016/S0006-3495(02)75406-4
Kholodenko Y, 2000, CHEM PHYS, V259, P71, DOI 10.1016/S0301-0104(00)00182-8
Kubinec M. G., 1992, CURR OPIN STRUC BIOL, V2, P828
Kumar ATN, 2001, J PHYS CHEM B, V105, P7847, DOI 10.1021/jp0101209
Levy Y, 2004, P NATL ACAD SCI USA, V101, P3325, DOI 10.1073/pnas.0400157101
Levy Y, 2006, ANNU REV BIOPH BIOM, V35, P389, DOI 10.1146/annurev.biophys.35.040405.102134
LI P, 1992, J CHEM PHYS, V97, P3214, DOI 10.1063/1.463008
Lim MH, 1996, J PHYS CHEM-US, V100, P12043, DOI 10.1021/jp9536458
Lowenich D, 2008, PHOTOCHEM PHOTOBIOL, V84, P193, DOI 10.1111/j.1751-1097.2007.00219.x
Makinen M. W., 1983, IRON PORPHYRINS, P41
Manas ES, 1999, J PHYS CHEM B, V103, P6334, DOI 10.1021/jp9908552
MARGOLIASH E., 1966, ADVANCE PROTEIN CHEM, V21, P113, DOI 10.1016/S0065-3233(08)60128-X
MARTIN JL, 1994, METHOD ENZYMOL, V232, P416
MARTIN JL, 1992, ANNU REV BIOPH BIOM, V21, P199, DOI 10.1146/annurev.biophys.21.1.199
MARTIN JL, 1983, P NATL ACAD SCI-BIOL, V80, P173, DOI 10.1073/pnas.80.1.173
Mitra RK, 2007, LANGMUIR, V23, P10224, DOI 10.1021/la7014447
MOORE GR, 1990, CYTOCHROMES EVOLUTIO
Negrerie M, 2006, J PHYS CHEM B, V110, P12766, DOI 10.1021/jp0559377
Nibbering ETJ, 2005, ANNU REV PHYS CHEM, V56, P337, DOI 10.1146/annurev.physchem.56.092503.141314
Oleinikova A, 2007, BIOPHYS J, V93, P2986, DOI 10.1529/biophysj.107.108753
OTTING G, 1989, J AM CHEM SOC, V111, P1871, DOI 10.1021/ja00187a050
Pal SK, 2004, CHEM REV, V104, P2099, DOI 10.1021/cr020689l
Pascher T, 1996, SCIENCE, V271, P1558, DOI 10.1126/science.271.5255.1558
Qiu WH, 2006, P NATL ACAD SCI USA, V103, P13979, DOI 10.1073/pnas.0606235103
Qiu WH, 2005, J PHYS CHEM B, V109, P16901, DOI 10.1021/jp0511754
Raschke TM, 2006, CURR OPIN STRUC BIOL, V16, P152, DOI 10.1016/j.sbi.2006.03.002
Reddy CK, 2001, J MOL BIOL, V314, P619, DOI 10.1006/jmbi.2001.5154
RODRIGUEZ J, 1991, J CHEM PHYS, V94, P6020, DOI 10.1063/1.460439
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
SCHEJTER A, 1964, BIOCHEMISTRY-US, V3, P1045, DOI 10.1021/bi00896a006
SCHEJTER A, 1984, BIOCHEMISTRY-US, V23, P1081, DOI 10.1021/bi00301a007
SHECHTER E, 1967, BIOPOLYMERS, V5, P788, DOI 10.1002/bip.1967.360050812
Smith JC, 2002, J MOL LIQ, V101, P27, DOI 10.1016/S0167-7322(02)00100-9
Stolow A, 2004, CHEM REV, V104, P1719, DOI 10.1021/cr020683w
Stolow A, 2003, ANNU REV PHYS CHEM, V54, P89, DOI 10.1146/annurev.physchem.54.011002.103809
SUBRAMANIAN S, 1972, BIOPOLYMERS, V11, P1305, DOI 10.1002/bip.1972.360110614
SUTHERLAND JC, 1972, J CHEM PHYS, V57, P76, DOI 10.1063/1.1678020
TAKANO T, 1981, J MOL BIOL, V153, P95, DOI 10.1016/0022-2836(81)90529-5
TAKANO T, 1981, J MOL BIOL, V153, P79, DOI 10.1016/0022-2836(81)90528-3
TALER G, 1995, BIOCHEMISTRY-US, V34, P14209, DOI 10.1021/bi00043a027
TEETER MM, 1991, ANNU REV BIOPHYS BIO, V20, P577, DOI 10.1146/annurev.biophys.20.1.577
Vos MH, 1999, BBA-BIOENERGETICS, V1411, P1, DOI 10.1016/S0005-2728(99)00035-3
Wang W, 2000, J PHYS CHEM B, V104, P10789, DOI 10.1021/jp0008602
WEI YZ, 1994, J PHYS CHEM-US, V98, P6644, DOI 10.1021/j100077a034
Werner JH, 2006, P NATL ACAD SCI USA, V103, P11130, DOI 10.1073/pnas.0604712103
Wilson M. T, 1996, CYTOCHROME C MULTIDI, P611
Ye MP, 2007, BIOPHYS J, V93, P2756, DOI 10.1529/biophysj.107.106799
Ye S, 2007, AIP CONF PROC, V893, P1307, DOI 10.1063/1.2730382
Ye X, 2002, J AM CHEM SOC, V124, P5914, DOI 10.1021/ja017359n
Ye XO, 2003, J PHYS CHEM A, V107, P8156, DOI 10.1021/jp0276799
Yeh SR, 1998, ACCOUNTS CHEM RES, V31, P727, DOI 10.1021/ar970084p
Yokoyama K, 2001, J PHYS CHEM B, V105, P12622, DOI 10.1021/jp011217y
Zang C, 2009, J AM CHEM SOC, V131, P2846, DOI 10.1021/ja8057293
Zelent B, 2004, J PHYS CHEM B, V108, P10317, DOI 10.1021/jp037664q
Zhang LY, 2007, P NATL ACAD SCI USA, V104, P18461, DOI 10.1073/pnas.0707647104
Zhou HX, 2001, BIOPHYS CHEM, V93, P171, DOI 10.1016/S0301-4622(01)00219-8
Ye, Shuji Markelz, Andrea
Ye, Shuji/B-4479-2010
Markelz, Andrea/0000-0003-0443-4319
NSFNational Science Foundation (NSF) [PHY-0349256, DBI-2959989]; University of Science and Technology of China; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21073175]; National Basic Research Program of ChinaNational Basic Research Program of China [2010CB923300]
This work was supported by NSF CAREER Grant PHY-0349256 and NSF MRI-R2 Grant DBI-2959989, the start-up funding from University of Science and Technology of China, the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (Grant 21073175), and National Basic Research Program of China (Grant 2010CB923300).
3
2
20
Amer chemical soc
Washington JO - J. Phys. Chem. BJ. Phys. Chem. B ER - TY - JOUR T1 - Hydration dependence of conformational dielectric relaxation of lysozyme JF - Biophysical Journal Y1 - 2006 A1 - Knab, Joseph A1 - Chen, Jing-Yin A1 - Markelz, Andrea VL - 90 SN - 0006-3495 ER - TY - Generic T1 - High field pulsed terahertz measurements of nonlinear conductivity T2 - Nonlinear Optics: Materials, Fundamentals, and Applications Y1 - 2000 A1 - A. G. Markelz KW - 0.5 THz KW - 2D electron gases KW - Conductivity measurement KW - electrical conductivity measurement KW - Electron emission KW - FEL measurements KW - Finite impulse response filter KW - high field pulsed terahertz measurements KW - high field pulsed terahertz spectroscopy KW - high-speed optical techniques KW - inplane nonlinear conductivity response KW - LO phonon bottleneck weakening KW - nonlinear conductivity KW - nonlinear optics KW - phonons KW - Power measurement KW - Pulse measurements KW - Resonance KW - semiconductor quantum wells KW - spectroscopy KW - Submillimeter wave measurements KW - submillimetre wave spectroscopy KW - two dimensional electron gases KW - two-dimensional electron gas AB -

High field pulsed terahertz spectroscopy is used to measure the inplane nonlinear conductivity response of two dimensional electron gases. Results are compared to FEL measurements suggesting LO phonon bottleneck weakening at 0.5 THz.

JF - Nonlinear Optics: Materials, Fundamentals, and Applications CY - Kaua'i-Lihue, HI, USA VL - 46 UR - https://ieeexplore.ieee.org/document/883591/authors#authors JO - Nonlinear Optics: Materials, Fundamentals, and Applications. Technical Digest. Postconference Edition. TOPS Vol.46 (IEEE Cat. No.00CH37174) ER -