TY - JOUR T1 - Linear dichroism infrared resonance in overdoped, underdoped, and optimally doped cuprate superconductors JF - Physical Review B Y1 - 2020 A1 - Mukherjee, A. A1 - Seo, J. A1 - Arik, M. M. A1 - Zhang, H. A1 - Zhang, C. C. A1 - Kirzhner, T. A1 - George, D. K. A1 - Markelz, A. G. A1 - Armitage, N. P. A1 - Koren, G. A1 - Wei, J. Y. T. A1 - Cerne, J. KW - Materials Science KW - Physics AB -

By measuring the polarization changes in terahertz, infrared, and visible radiation over an extended energy range (3-2330 meV), we observe symmetry breaking in cuprate high-temperature superconductors over wide energy, doping, and temperature ranges. We measure the polarization rotation (Re[theta(F)]) and ellipticity (Im[theta(F)]) of transmitted radiation through thin films as the sample is rotated. We observe a twofold rotational symmetry in theta(F), which is associated with linear dichroism (LD) and occurs when electromagnetic radiation polarized along one direction is absorbed more strongly than radiation polarized in the perpendicular direction. Such polarization anisotropies can be generally associated with symmetry breakings. We measure the amplitude of the LD signal and study its temperature, energy, and doping dependence. The LD signal shows a resonant behavior with a peak in the few hundred meV range, which is coincident with the midinfrared optical feature that has been associated with the formation of the pseudogap state. The strongest LD signal is found in underdoped films, although it is also observed in optimally and overdoped samples. The LD signal is consistent with an electronic nematic order which is decoupled from the crystallographic axes as well as novel magnetoelectric effects.

VL - 102 SN - 2469-9950 N1 - ISI Document Delivery No.: NE5GO
Times Cited: 0
Cited Reference Count: 30
Cited References:
Acbas G, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.137201
Armitage NP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.035135
Arpaia R, 2018, PHY REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.024804
Basov DN, 2005, REV MOD PHYS, V77, P721, DOI 10.1103/RevModPhys.77.721
Blumberg G, 1996, PHYS REV B, V53, P11930, DOI 10.1103/PhysRevB.53.R11930
Cerne J, 2000, PHYS REV LETT, V84, P3418, DOI 10.1103/PhysRevLett.84.3418
Fauque B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.197001
Fridman I, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.104522
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Halperin B. I., 1991, SPRINGER P PHYS, V60, P439
Humlicek J, 2000, PHYS REV B, V61, P14554, DOI 10.1103/PhysRevB.61.14554
KOREN G, 1989, APPL PHYS LETT, V54, P1054, DOI 10.1063/1.101559
Koren G, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.174515
Lubashevsky Y, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.147001
Mukherjee A, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.085440
Nie LM, 2014, P NATL ACAD SCI USA, V111, P7980, DOI 10.1073/pnas.1406019111
Orenstein J, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.067002
PISAREV RV, 1991, PHASE TRANSIT, V37, P63, DOI 10.1080/01411599108203448
Simon ME, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.247003
TROFIMOV IE, 1994, APPL PHYS LETT, V65, P2481, DOI 10.1063/1.112671
Varma CM, 2014, EPL-EUROPHYS LETT, V106, DOI 10.1209/0295-5075/106/27001
Varma CM, 1997, PHYS REV B, V55, P14554, DOI 10.1103/PhysRevB.55.14554
Wu J, 2017, NATURE, V547, P432, DOI 10.1038/nature23290
Xia J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.127002
Yakes MK, 2010, NANO LETT, V10, P1559, DOI 10.1021/nl9035302
Yakovenko VM, 2015, PHYSICA B, V460, P159, DOI 10.1016/j.physb.2014.11.060
Zhang H, 2018, PHYS REV MATER, V2, DOI 10.1103/PhysRevMaterials.2.033803
Zhang J, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao5235
Zhao L, 2017, NAT PHYS, V13, P250, DOI [10.1038/nphys3962, 10.1038/NPHYS3962]
Zhao L., 2018, ENCY MODERN OPTICS, P207
Mukherjee, A. Seo, J. Arik, M. M. Zhang, H. Zhang, C. C. Kirzhner, T. George, D. K. Markelz, A. G. Armitage, N. P. Koren, G. Wei, J. Y. T. Cerne, J.
NSF-DMR GrantNational Science Foundation (NSF) [1410599]; NSFNational Science Foundation (NSF) [MCB 1616529, DMR 1905519]; DOEUnited States Department of Energy (DOE) [DE-SC0016317]; NSERCNatural Sciences and Engineering Research Council of Canada (NSERC); CFI-OITCanada Foundation for Innovation; Canadian Institute for Advanced ResearchCanadian Institute for Advanced Research (CIFAR)
We are indebted to D. Hsieh, S. A. Kivelson, C. M. Varma, and L. Zhao for helpful discussions. We gratefully acknowledge support from NSF-DMR Grant No. 1410599 (J.C.). A.G.M. and D.K.G. were supported by NSF Grant No. MCB 1616529 and DOE Grant No. DE-SC0016317. Work in Toronto was supported by NSERC, CFI-OIT, and the Canadian Institute for Advanced Research. J.Y.T.W. thanks Kejun Xu for laboratory assistance in Toronto. N.P.A. was supported by NSF Grant No. DMR 1905519.

9
Amer physical soc
College pk
2469-9969 ER -