TY - JOUR T1 - Modulated orientation-sensitive terahertz spectroscopy JF - Photonics Research Y1 - 2016 A1 - Singh, R. A1 - George, D. K. A1 - Bae, C. J. A1 - Niessen, K. A. A1 - Markelz, A. G. KW - absorption-spectroscopy KW - dynamics KW - enzyme catalysis KW - low-frequency modes KW - lysozyme KW - neutron-scattering KW - Optics KW - perspective KW - polarization modulation KW - proteins KW - water AB -

Intramolecular vibrations of large macromolecules reside in the terahertz range. In particular, protein vibrations are closely spaced in frequency, resulting in a nearly continuous vibrational density of states. This density of vibrations interferes with the identification of specific absorption lines and their subsequent association with specific functional motions. This challenge is compounded with the absorption being dominated by the solvent and local relaxational motions. A strategy for removing the isotropic relaxational loss and isolating specific vibrations is to use aligned samples and polarization-sensitive measurements. Here, we demonstrate a technique to rapidly attain the anisotropic resonant absorbance using terahertz time domain spectroscopy and a spinning sample. The technique, modulated orientation-sensitive terahertz spectroscopy (MOSTS), has a nonzero signal only for anisotropic samples, as demonstrated by a comparison between a silicon wafer and a wire grid polarizer. For sucrose and oxalic acid molecular crystals, the MOSTS response is in agreement with modeled results for the intermolecular vibrations. Further, we demonstrate that, even in the presence of a large relaxational background, MOSTS isolates underlying vibrational resonances. (C) 2016 Chinese Laser Press

VL - 4 SN - 2327-9125 N1 - ISI Document Delivery No.: DM9BJ
Times Cited: 6
Cited Reference Count: 40
Cited References:
Acbas G, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4076
Aguilar RV, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.087403
Aschaffenburg DJ, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.4729148
Bahar I, 2005, CURR OPIN STRUC BIOL, V15, P586, DOI 10.1016/j.sbi.2005.08.007
Benkovic SJ, 2003, SCIENCE, V301, P1196, DOI 10.1126/science.1085515
Boehr DD, 2006, CHEM REV, V106, P3055, DOI 10.1021/cr050312q
Chen JY, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.040901
Chen Q, 1999, APPL PHYS LETT, V74, P3435, DOI 10.1063/1.124119
Daniel RM, 2003, ANNU REV BIOPH BIOM, V32, P69, DOI 10.1146/annurev.biophys.32.110601.142445
Diehl M, 1997, BIOPHYS J, V73, P2726, DOI 10.1016/S0006-3495(97)78301-2
Ebbinghaus S, 2007, P NATL ACAD SCI USA, V104, P20749, DOI 10.1073/pnas.0709207104
Falconer RJ, 2012, J INFRARED MILLIM TE, V33, P973, DOI 10.1007/s10762-012-9915-9
Fan ST, 2014, J PHYS D APPL PHYS, V47, DOI 10.1088/0022-3727/47/37/374009
Frauenfelder H, 2006, P NATL ACAD SCI USA, V103, P15469, DOI 10.1073/pnas.0607168103
Gabel F, 2002, Q REV BIOPHYS, V35, P327, DOI 10.1017/S0033583502003840
George DK, 2012, J OPT SOC AM B, V29, P1406, DOI 10.1364/JOSAB.29.001406
Giraud G, 2003, BIOPHYS J, V85, P1903, DOI 10.1016/S0006-3495(03)74618-9
Hammes GG, 2011, BIOCHEMISTRY-US, V50, P10422, DOI 10.1021/bi201486f
Jackson J.D., 1975, CLASSICAL ELECTRODYN
Jenkins GS, 2010, REV SCI INSTRUM, V81, DOI 10.1063/1.3480554
Jepsen PU, 2007, CHEM PHYS LETT, V442, P275, DOI 10.1016/j.cplett.2007.05.112
Karplus M, 2005, P NATL ACAD SCI USA, V102, P6679, DOI 10.1073/pnas.0408930102
Kim SJ, 2008, ANGEW CHEM INT EDIT, V47, P6486, DOI 10.1002/anie.200802281
Kindt JT, 1996, J PHYS CHEM-US, V100, P10373, DOI 10.1021/jp960141g
King MD, 2010, J PHYS CHEM A, V114, P7127, DOI 10.1021/jp101935n
Kroll J, 2007, VIB SPECTROSC, V43, P324, DOI 10.1016/j.vibspec.2006.03.010
Leitner DM, 2008, HFSP J, V2, P314, DOI 10.2976/1.2976661
Li M, 2011, OPT LETT, V36, P3633, DOI 10.1364/OL.36.003633
Liu D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.135501
Niessen Katherine A, 2015, Biophys Rev, V7, P201, DOI 10.1007/s12551-015-0168-4
PETHIG R, 1995, PROTEIN SOLVENT INTE, P265
Planken PCM, 2001, J OPT SOC AM B, V18, P313, DOI 10.1364/JOSAB.18.000313
Rheinstadter MC, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.128104
RUPLEY JA, 1991, ADV PROTEIN CHEM, V41, P37
Singh R, 2012, J PHYS CHEM A, V116, P10359, DOI 10.1021/jp307288r
TORGESEN JL, 1964, SCIENCE, V146, P53, DOI 10.1126/science.146.3640.53
Vinh NQ, 2011, J AM CHEM SOC, V133, P8942, DOI 10.1021/ja200566u
Walther M, 2003, CHEM PHYS, V288, P261, DOI 10.1016/S0301-0104(03)00031-4
Xu J, 2006, J PHYS CHEM B, V110, P24255, DOI 10.1021/jp064830w
Yasumatsu N, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.3683570
Singh, Rohit George, Deepu Koshy Bae, Chejin Niessen, K. A. Markelz, A. G.
George, Deepu/J-9882-2014
George, Deepu/0000-0003-0021-0705
National Science Foundation (NSF)National Science Foundation (NSF) [DBI2959989]; University at Buffalo (UB) [1126960-1-68255]; Los Alamos National Laboratory (LANL)United States Department of Energy (DOE)Los Alamos National Laboratory [1125895-1-71842]; Direct For Biological SciencesNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation; Div Of Biological InfrastructureNational Science Foundation (NSF)NSF - Directorate for Biological Sciences (BIO) [1556359] Funding Source: National Science Foundation
National Science Foundation (NSF) (DBI2959989); University at Buffalo (UB) (Holm Fund 1126960-1-68255); Los Alamos National Laboratory (LANL) (Molecular Crystal Studies 1125895-1-71842).
6

26
Optical soc amer
Washington JO - Photonics Res.Photonics Res. ER -