%0 Book Section %B Terahertz Frequency Detection and Identification of Materials and Objects %D 2007 %T Development of Tagless Biosensors for Detecting the Presence of Pathogens %A Markelz, A. G. %A Chen, J.-Y. %A Knab, J. R. %A He, Y. %A Ye, S. %B Terahertz Frequency Detection and Identification of Materials and Objects %I Springer %C Dordrecht, The Netherlands %V ed X.-C. Zhang, R. E. Miles, H. Eisele and A. Krotkus %P 123-134 %G eng %& 9 %0 Journal Article %J Solid-State Electronics %D 1994 %T DC TRANSPORT IN INTENSE, INPLANE TERAHERTZ ELECTRIC-FIELDS IN AL(X)GA(1-X)AS HETEROSTRUCTURES AT 300-K %A Asmar, N. G. %A Markelz, A. G. %A Gwinn, E. G. %A Hopkins, P. F. %A Gossard, A. C. %X

We report 300 K studies of the dependence of the in-plane, d.c. conductivity, sigma(d.c.) (E(omega)), of a quasi 2D electron gas on the amplitude E(omega) and frequency of intense, far-infrared fields (omega/2pi = 0.24-3.5 THz). We measure sigma(d.c.) (E(omega) parallel-to E(d.c.)), where E(d.c.) is a small sensing field, and observe a monotonic decrease in sigma(d.c.) with increasing E(omega). Although a simple scaling ansatz collapses the measured sigma(d.c.) (E(omega)) data onto a single curve for frequencies from 0.25-3.45 THz (at low to moderate scaled fields), the decrease in conductivity is substantially more rapid than expected from comparison to similar data taken by Masselink et al. [Solid-St. Electron. 31, 337 (1988)] at 35 GHz. We tentatively attribute this difference to effects of a high-frequency modulation in the electron temperature.

%B Solid-State Electronics %V 37 %P 693-695 %8 Apr-Jun %@ 0038-1101 %G eng %M WOS:A1994NE79600042 %R 10.1016/0038-1101(94)90278-X