Publications
Export 63 results:
Author Title Type [ Year
Filters: First Letter Of Last Name is S [Clear All Filters]
“Near-Field Stationary Sample Terahertz Spectroscopic Polarimetry For Biomolecular Structural Dynamics Determination”. Acs Photonics 8, no. 2 (2021): 658-668. doi:10.1021/acsphotonics.0c01876.
. “Phonon Kinetics Of Fructose At The Melting Transition”. J. Phys. Chem. C 125, no. 22 (2021): 12269-12276. doi:10.1021/acs.jpcc.1c00610.
. “Evidence Of Intramolecular Structural Stabilization In Light Activated State Of Orange Carotenoid Protein”. Biophysical Journal 118, no. 3 (2020): 208A-208A. doi:10.1016/j.bpj.2019.11.1245.
. “Linear Dichroism Infrared Resonance In Overdoped, Underdoped, And Optimally Doped Cuprate Superconductors”. Physical Review B 102 (2020): 6. doi:10.1103/PhysRevB.102.054520.
. “Is The Protein Dynamical Transition Useful?”. Biophysical Journal 118, no. 3 (2020). doi:10.1016/j.bpj.2019.11.2866.
. “Stabilization Of Terahertz Vibrational Modes In Illuminated Orange Carotenoid Protein Crystals”. 2020 45Th International Conference On Infrared, Millimeter, And Terahertz Waves (Irmmw-Thz). Buffalo, NY, 2020. doi:10.1109/IRMMW-THz46771.2020.9370827.
. “Anisotropic Terahertz Microscopy Of Protein Collective Vibrations: Crystal Symmetry And Hydration Dependence”. 2019 44Th International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2019. doi:https://doi.org/10.1109/IRMMW-THz.2019.8873722.
. “Blue Shift Of A Molecular Crystal Phonon At The Solid To Liquid Phase Transition”. Bulletin Of The American Physical Society 2019 (2019).
. “Protein And Rna Dynamical Fingerprinting”. Nature Communications 10 (2019): 1-10. doi:https://doi.org/10.1038/s41467-019-08926-3.
. “Protein And Rna Dynamical Fingerprinting”. Nature Communications 10 (2019): 1-10. doi:https://doi.org/10.1038/s41467-019-08926-3.
. “Stationary Sample Anisotropic Thz Spectroscopy Using Discretely Tunable Thz Sources”. 2019 44Th International Conference On Infrared, Millimeter, And Terahertz Waves, 2019. doi:https://doi.org/10.1109/IRMMW-THz.2019.8874234.
. “Tunable Compact Narrow Band Thz Sources For Frequency Domain Thz Anisotropic Spectroscopy”. Conference On Next-Generation Spectroscopic Technologies Xii. Baltimore, MD: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2519878.
. “Tunable Compact Narrow Band Thz Sources For Frequency Domain Thz Anisotropic Spectroscopy”. Conference On Next-Generation Spectroscopic Technologies Xii. Baltimore, MD: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2519878.
. “Tunable Compact Narrow Band Thz Sources For Frequency Domain Thz Anisotropic Spectroscopy”. Conference On Next-Generation Spectroscopic Technologies Xii. Baltimore, MD: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2519878.
. .
“Tunable Narrowband Thz Generation In Orientation Patterned Gallium Phosphide For Thz Anisotropy Identification”. Nonlinear Frequency Generation And Conversion: Materials And Devices Xviii. Bellingham: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2510522.
. “Tunable Narrowband Thz Generation In Orientation Patterned Gallium Phosphide For Thz Anisotropy Identification”. Nonlinear Frequency Generation And Conversion: Materials And Devices Xviii. Bellingham: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2510522.
. “Tunable Narrowband Thz Generation In Orientation Patterned Gallium Phosphide For Thz Anisotropy Identification”. Nonlinear Frequency Generation And Conversion: Materials And Devices Xviii. Bellingham: Spie-Int Soc Optical Engineering, 2019. doi:https://doi.org/10.1117/12.2510522.
. .
“Thz Anisotropy Identification Using Tunable Compact Narrow Band Thz Sources”. 2018 43Rd International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2018. doi:https://doi.org/10.1109/IRMMW-THz.2018.8510291.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “The 2017 Terahertz Science And Technology Roadmap”. Journal Of Physics D-Applied Physics 50 (2017): 49. doi:https://doi.org/10.1088/1361-6463/50/4/043001.
. “Importance Of Protein Vibration Directionality On Function”. Biophysical Journal 112 (2017): 353A-353A. doi:10.1016/j.bpj.2016.11.1916.
. “Moving In The Right Direction: Protein Vibrations Steering Function”. Biophysical Journal 112 (2017): 933-942. doi:https://doi.org/10.1016/j.bpj.2016.12.049.
. “Anisotropic Absorption Measurements Reveal Protein Dynamical Transition In Intramolecular Vibrations”. 2016 41St International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2016. doi:10.1109/IRMMW-THz.2016.7758347.
. “Direct Measurements Of The Long-Range Collective Vibrations Of Photoactive Yellow Protein”. In 30Th Anniversary Symposium Of The Protein Society. Baltimore MD, 2016. doi:10.1002/pro.3026.
. “Modulated Orientation-Sensitive Terahertz Spectroscopy”. Photonics Research 4 (2016): A1-A8. doi:https://doi.org/10.1364/PRJ.4.0000A1.
. “ The Role Of Dynamical Transition In Protein Function: Coupling Of Protein Collective Vibrations And Water Dynamics”. In 30Th Anniversary Symposium Of The Protein Society. Baltimore, MD, 2016. doi:10.1002/pro.3026.
. “Measurements And Calculations Of Protein Intramolecular Vibrations In The Thz Range”. 2014 39Th International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2014. doi:10.1109/IRMMW-THz.2014.6956080.
. “Optical Measurements Of Long-Range Protein Vibrations”. Nature Communications 5 (2014): 7. doi:https://doi.org/10.1038/ncomms4076.
. “Measuring Phonons In Protein Crystals”. Ultrafast Phenomena And Nanophotonics Xvii. Bellingham: Spie-Int Soc Optical Engineering, 2013. doi:https://doi.org/10.1117/12.2006275.
. “Measuring Phonons In Protein Crystals”. Ultrafast Phenomena And Nanophotonics Xvii. Bellingham: Spie-Int Soc Optical Engineering, 2013. doi:https://doi.org/10.1117/12.2006275.
. “Improved Mode Assignment For Molecular Crystals Through Anisotropic Terahertz Spectroscopy”. The Journal Of Physical Chemistry A 116 (2012): 10359-10364. doi:https://doi.org/10.1021/jp307288r.
. “Multi-Component Response In Multilayer Graphene Revealed Through Terahertz And Infrared Magneto-Spectroscopy”. 37Th International Conference On Infrared, Millimeter, And Terahertz Waves. Wollongong, Australia, 2012. doi:10.1109/IRMMW-THz.2012.6380102.
. “Orientation Sensitive Terahertz Resonances Observed In Protein Crystals”. 2012 37Th International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2012. doi:https://doi.org/10.1109/IRMMW-THz.2012.6380168.
. “Terahertz Magneto-Optical Polarization Modulation Spectroscopy”. Josa Bjosa B 29 (2012): 1406-1412. doi:https://doi.org/10.1364/JOSAB.29.001406.
. “Terahertz Response And Colossal Kerr Rotation From The Surface States Of The Topological Insulator Bi2Se3”. Physical Review Letters 108 (2012): 5. doi:https://doi.org/10.1103/physrevlett.108.087403.
. “Magneto Optical Polarization Measurements Using Thz Polarization Modulation Spectroscopy”. 2011 36Th International Conference On Infrared, Millimeter, And Terahertz Waves. New York: Ieee, 2011. doi:10.1364/JOSAB.29.001406.
. “ Characterization Of Phonons In Molecular Crystals ”. In Frontiers In Optics 2010. Rochester, 2010. doi:10.1364/FIO.2010.JWA19.
. “Terahertz Response Of Quantum Point Contacts”. Applied Physics Lettersapplied Physics Lettersapplied Physics Letters 92 (2008): 3. doi:https://doi.org/10.1063/1.2938416.
. “Terahertz Transmission Characteristics Of High-Mobility Gaas And Inas Two-Dimensional-Electron-Gas Systems”. Applied Physics Letters 89 (2006): 3. doi:10.1063/1.2357605.
. “Critical Hydration And Temperature Effects On Terahertz Biomolecular Sensing”. Chemical And Biological Standoff Detection Iii. International Society for Optics and Photonics, 2005. doi:10.1117/12.630854.
. “Direct Measurements Of Optical Phonons In Srtio3 Nanosystems”. Physica E: Low-Dimensional Systems And Nanostructures 19, no. 1 (2003): 236 - 239. doi:10.1016/S1386-9477(03)00305-9.
. “Temperature Of Quasi-Two-Dimensional Electron Gases Under Steady-State Terahertz Drive”. Applied Physics Letters 68 (1996): 829-831. doi:10.1063/1.116547.
. “Undressing A Collective Intersubband Excitation In A Quantum Well”. Physical Review Letters 76 (1996): 2382-2385. doi:10.1103/PhysRevLett.76.2382.
. “Nonlinear Quantum Dynamics In Semiconductor Quantum-Wells”. Physica D-Nonlinear Phenomena 83 (1995): 229-242. doi:10.1016/0167-2789(94)00266-S.
. “Quenching Of Excitonic Quantum-Well Photoluminescence By Intense Far-Infrared Radiation - Free-Carrier Heating”. Physical Review B 51 (1995): 5253-5262. doi:10.1103/PhysRevB.51.5253.
. “Quenching Of Excitonic Quantum-Well Photoluminescence By Intense Far-Infrared Radiation - Free-Carrier Heating”. Physical Review B 51 (1995): 5253-5262. doi:10.1103/PhysRevB.51.5253.
. “Resonant-Energy Relaxation Of Terahertz-Driven 2-Dimensional Electron Gases”. Physical Review B 51 (1995): 18041-18044. doi:10.1103/PhysRevB.51.18041.
. “Far-Infrared Harmonic Generation From Semiconductor Heterostructures”. Spie Proceedings, 1994.
. “Far-Infrared Saturation Spectroscopy Of A Single Square-Well”. Semiconductor Science And Technology 9 (1994): 627-629. doi:10.1088/0268-1242/9/5S/061.
. “Giant 3Rd-Order Nonlinear Susceptibilities For Inplane Far-Infrared Excitation Of Single Inas Quantum-Wells”. Solid-State Electronics 37 (1994): 1243-1245. doi:10.1016/0038-1101(94)90399-9.
. “Probing Terahertz Dynamics In Semiconductor Nanostructures With Ucsb Free-Electron Lasers”. Journal Of Luminescence 60-1 (1994): 250-255. doi:10.1016/0022-2313(94)90142-2.
. “Probing Terahertz Dynamics In Semiconductor Nanostructures With Ucsb Free-Electron Lasers”. Journal Of Luminescence 60-1 (1994): 250-255. doi:10.1016/0022-2313(94)90142-2.
. “Subcubic Power Dependence Of 3Rd-Harmonic Generation For Inplane, Far-Infrared Excitation Of Inas Quantum-Wells”. Semiconductor Science And Technology 9 (1994): 634-637. doi:https://doi.org/10.1088/0268-1242/9/5S/063.
. “Far-Infrared Nonlinear Response Of Electrons In Semiconductor Nanostructures”. Spie Proceedings, 1993.
. “Far-Infrared Nonlinear Response Of Electrons In Semiconductor Nanostructures”. Spie Proceedings, 1993.
. “8 New High-Temperature Superconductors With The 1-2-4 Structure”. Physical Review B 39 (1989): 7347-7350. doi:10.1103/physrevb.39.7347 .
. “8 New High-Temperature Superconductors With The 1-2-4 Structure”. Physical Review B 39 (1989): 7347-7350. doi:10.1103/physrevb.39.7347 .
.